Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Алейник Станислав Николаевич

Должность: Ректор

Дата подписания: 20.07.2023 09:23:27 Уникальный программный ключ:

5258223550ea9fbeb23726a1609b644b33d8986ab6255891f288f913a1351fae

УТВЕРЖДАЮ: Директор ИПКА ФГБОУ ВО Белгородский ГАУ

А.В. Косов

<u>09</u> » марта 2023 г

Учебный план «Генетика- как основа селекционной деятельности»

No	Наименования модуля, раздела,	Bce-	Ког	нтактна	я работа	, час., і	в том ч	исле:	Электронное			Само-	Ста-	Форм	троля	
Π/Π	темы	ГО	аудит	горная	работа,	с применением ди-			обучение			стоя-	жи-			
		ча-		час.		станционных обра-			(ЭО), час.			тельная	ров-			
		сов				зоват	зовательных техно-			ПЗ	Bce-	работа,	ка,	3	Э	МЭ
						логий (ДОТ), час.					ГО	час.	час.			
			Лк	П3	Всего	Лк	П3	Всего								
1	Модуль 1. «Молекулярная се-	78														
1	лекция. Генная инженерия»															
1.1	Концепции и методы генной	18	2	4	6	2		2				10				
	инженерии:															
	-возникновение и развитие гене-															
	тической инженерии;															
	- ферменты генной инженерии,															
	-рестриктазы как инструмент															
	генной инженерии;															
	-разделение фрагментов ДНК по															
	размерам и обнаружение фраг-															
	ментов с определенной последо-															
	вательностью нуклеотидов;															
	-понятие о плазмидах и векторах															l
	как инструментах генетической															l
	инженерии,															ĺ
	-клонирование генов.															
1.2	Генетические манипуляции на	20	2	2	4	2		2				14				ĺ
	молекулярном уровне:															ĺ

	-понятие вектора и его емкости, -конструирование рекомбинантных ДНК; -рестракционно-лигазный метод; -методы клонирования ДНК; -определение нуклеотидной последовательности (секвенирование) ДНК.										
1.3	Полимеразная цепная реакция: -механизм полимеразной цепной реакции; -основные этапы ПЦР; -использование метода.	18	2	4	6	2	2		10		
1.4	Введение нового гена в клетку — гены-маркеры; -регуляция экспрессии гена у прокариот и эукариот; -типы векторов; -плазмы агробактерий; -транспозоны; -способы прямого введения гена в клетку. Промежуточная аттестация	20	2	2	4	4	4		12	2	
	Итоги по модулю 1	78			20		10		46	2	
2	Модуль 2. «Биотехнологиче- ские методы в селекции Технологии ускоренной селек- ции	94			20						
2.1	Клеточная инженерия: -биотехнология как наука; -применение методов биотехнологии в селекции; -использование культуры изолированных клеток, тканей и органов в биотехнологии,; -культура каллусных тканей; -муспензионные культуры, их получение, культивирование и	16	2	2	4	2	2		10		

	использование; -регенерация и морфогенез растений в культуре in vitro;										
2.2	Применение методов in-vitro в селекции растений: -преодоление прогамной и постгамной несовместимости при отдалённой гибридизации растений; -индукция гаплоидии в культуре тканей и использование гаплоидов и дигаплоидов в селекции растений; -клеточная селекция растений, -использование гибридизации соматических клеток в селекции растений; -криосохранение как метод создания банка клеток и тканей;	16	2	2	4	2	2		10		
2.3	Применение методов in-vitro в селекции растений для размножения не жизнеспособных гибридов: - эмбриокультура, тотипотентность растительных тканей; -соматический эмбриогенез; -использование культуры изолированных тканей и клеток в селекции растений.	20	2	2	4	4	4		12		
2.4	Генетические ресурсы – основа современной селекции: -формирование стратегических задач современной селекции растений; -изучение генетических ресурсов;	10	2	2	4	2	2		4		
2.5	Молекулярно-генетические маркеры и современные методы ДНК-типирования:	10	2	2	4	2	2		4		

	-стратегия молекулярно- генетического маркирования, -классификация молекулярно- генетических маркеров и основ- ных методов ДНК-типирования; -определение хромосомных и других крупных геномных пере- строек; -использование маркеров для защиты новых сортов;										
2.6	Практическое применение маркер-вспомогательной селекции: -маркерная помощь при беккроссировании генотипов с моногенным признаком; -маркерная помощь при беккроссировании полигенного признака; -маркерная помощь рекуррентной селекции (рекуррентной селекции (рекуррентной селекции отбору); -комбинированный отбор, основанный на фенотипе и маркерах; -совокупный сегрегационный анализ; -идентификация ассоциаций «маркер-признак»; -блоки сцепленных генов.	20	2	2	4	4	4		12		
	Промежуточная аттестация	2								2	
	Итоги по модулю 2	94			24		16		52	2	
3	Модуль 3. Генетика иммунитета растений. Генетика онтогенеза растений	48									
3.1	Понятие иммунитета растений Вклад Н.И. Вавилова в изучении проблемы иммунитета.	10	2	2	4	2	2		4		
3.2	Основные типы иммунитета	10	2	2	4	2	2		4		

	растений Типы активного иммунитета неспецифичный (базовый иммунитет или горизонтальная устойчивость) и специфичный (вертикальная или расоспецифическая устойчивость).										
3.3	Молекулярно-генетические механизмы неспецифического врожденного иммунитета растений Рецепторы врожденного неспецифичного иммунитета и их лиганды Структура рецепторовРRR. Активирующие их лиганды РАМР, НАМР, DAMP—чужеродный биоматериал, попавший на поверхность клетки.	10	2	2	4	2	2		4		
3.4	Молекулярно-генетические механизмы специфического врожденного иммунитета Эффекторные молекулы патогенов (элиситоры) и их рецепторы (R – белки) Доменная структура рецепторов, основные типы LRRs — структурная основа иммунного ответа растений.	8	2	2	4	2	2		2		
3.5	Общие принципы регуляции развития растений - Генетический контроль морфогенеза растений Генетический контроль развития разных доменов зародыша.	8	2		2	2	2		4		
	Промежуточная аттестация	2								2	
	Итоги по модулю 3	48			18		10		18	2	

4	Модуль 4. Генетические технологии растений в решении задач селекции и семеноводства	30										
4.1	Геномное редактирование растений Система CRISPR—Саѕ для получения целевых мутаций в различных растительных организмах.	16	2	4	6	4	4		6			
4.2	Молекулярно-генетические маркеры - Типы генетических маркеров Методы создания генетических маркеров.	12	4		4	2	2		6			
	Промежуточная аттестация	2								2		
	Итоги по модулю 4	30			10		6		12	2		
4	Итоговая аттестация	2									2	
	ИТОГО	252	36	36	72	42	42		128	8	2	