МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Документ подписан преотрежуний поступанное постоя подписан преотрежуний подписан преотрежуний подписан подписан преотрежуний подписан под

ФИО: Алейник Станислав Николаевич УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Должность: Ректор «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ В.Я.ГОРИНА» Дата подписания: 25.02.2021 12:35:46

Уникальный программный ключ:

5258223550ea9fbeb23726a1609b644b33d8986ab6255891f288f913a1351fae

Инженерный факультет

Декан инженерного факультета

Инжинерный факультета

Стребков С.В.

2020 года

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Сопротивление материалов

Направление подготовки/специальность — <u>35.03.06 Агроинженерия</u> шифр, наименование

Направленность (профиль): «Технический сервис в АПК»

Квалификация – бакалавр

Год начала подготовки: 2020

Рабочая программа составлена с учетом требований:

- федерального государственного образовательного стандарта высшего образования — бакалавриат по направлению подготовки 35.03.06 Агроинженерия, утвержденного приказом Министерства образования и науки Российской Федерации от 23.08.2017 г. №813;
- порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры, утвержденного приказом Министерства образования и науки РФ от 5.04.2017 г. №301;
- профессионального стандарта «Специалист в области механизации сельского хозяйства», утвержденного Министерством труда и социальной защиты РФ от 21 мая 2014 г. №340н

Организация - разработчик: ФГБОУ ВО Белгородский ГАУ

Разработчик(и): д.т.н., профессор кафедры технической механики и конструирования машин Пастухов А.Г.

Рассмотрена на заседании кафедры технической механики и конструирования машин

« <u>2</u> 5» 06	20 <u>20_</u> г., протокол № <u>12-19</u> /20
Зав. кафедрой	Б Пастухов А.Г.
	(подпись)

Согласована с выпускающей кафедрой технического сервиса в АПК

«25» 06	2020 г., протокол № 10-1/11-20
Зав. кафедрой	Бондарев А.В.
	(подпись)

Руководитель основной профессиональной образовательной программы

_____ Романченко М.И.

I ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Сопротивление материалов – дисциплина, изучающая инженерные методы расчета элементов машин и оборудования на прочность, жесткость и устойчивость при рациональном удовлетворении требований надежности и экономичности.

1.1 Цель изучения дисциплины:

- сформировать у студентов теоретико-практическую базу для понимания методов расчета элементов машин и оборудования и основу инженерной подготовки для последующего изучения общеинженерных и специальных дисциплин.

1.2 Задачи:

- научить теоретико-практическим методам расчета и испытаний на прочность, жесткость и устойчивость на примере типичных элементов машин и оборудования;
- привить первичные практические умения и навыки обеспечения прочности объектов профессиональной деятельности посредством прикладного программного обеспечения.

II МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ (ОПОП)

2.1 Цикл (раздел) ОПОП, к которому относится дисциплина

Дисциплина «Сопротивление материалов» относится к части дисциплин, формируемых участниками образовательных отношений (Б1.В.02) основной профессиональной образовательной программы.

2.2 Логическая взаимосвязь с другими частями ОПОП

	,
Наименование предше-	Математика
ствующих дисциплин,	Физика
практик, на которых ба-	Начертательная геометрия. Инженерная графика
зируется данная дисци-	Теоретическая механика
плина (модуль)	Материаловедение и технология конструкционных материалов
	Метрология, стандартизация и сертификация
	Знать:
	- основные физические величины системы единиц СИ (SI);
	- элементарные способы арифметических вычислений, методы
	и приемы алгебры и геометрии;
	- законы Ньютона, понятия силы и момента силы, механиче-
	ской работы, энергии и мощности;
	- основные механические свойства и характеристики конструк-
Требования к	ционных материалов;
предварительной	- способы управления информацией (извлекать и анализировать
подготовке	информацию из различных источников);
обучающихся	Уметь:
	- использовать формы условий статического равновесия;
	- применять методы дифференциального и интегрального ис-
	числения;
	- выполнять графические модели объектов и иллюстрации ре-
	зультатов расчета;
	Владеть:
	- теоретическими знаниями и практическими навыками вос-

приятия традиционных и инновационных способов получения знаний, применения ЭВМ, испытаний и т.п. для решения задач прочностных расчетов в области агроинженерии.

III ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИ-ПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Коды компетенций	Формулировка компетенции	Индикаторы достижения компетенции	Планируемые результаты обучения по дисциплине
	Способен участ- вовать в проек- тировании тех-	ПК 2.2 Производит расчеты при проектировании технических систем, систем технического обслуживания сельскохозяйственной техники	Знать: механические свойства и характеристики материалов, методики их определения; теорию расчета геометрических характеристик плоских поперечных сечений брусьев; Уметь: определять внутренние силовые факторы при различных видах деформаций элементов конструкций и строить их эпюры; выбирать материал деталей в зависимости от характера нагружения и условий эксплуатации машин; Владеть: методикой расчета статически определимых и неопределимых конструкций; методами экспериментального определения напряжений и деформаций в деталях.
ПК 2	нических систем обеспечения технологических процессов сельскохозяйственного производства	ПК 2.3 Способен участвовать в проектирова- нии техниче- ских систем обеспечения технологиче- ских процес- сов сельско- хозяйственно- го производ- ства	Знать: расчетные формулы напряжений и деформаций для различных видов деформаций с учетом вида нагружения элементов конструкций (условия прочности, жесткости и устойчивости); основы назначения допускаемых напряжений и коэффициента запаса прочности; условия проведения опытных исследований механических свойств материалов; Уметь: производить расчеты на прочность, жесткость и устойчивость элементов машин и оборудования; пользоваться терминологией дисциплины; пользоваться нормативно-технической документацией; Владеть: прикладным методами с целью проведения проверочных расчетов, проектных расчетов и определения несущей способности конструкций; способами сопоставительного анализа опытных данных.

IV ОБЪЕМ, СТРУКТУРА, СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, ВИДЫ УЧЕБНОЙ РАБОТЫ И ФОРМЫ КОНТРОЛЯ ЗНАНИЙ

4.1 Распределение объема учебной работы по формам обучения (очная)

Вид работы	Объем учебной	і работы, час
Формы обучения (вносятся данные по реализуемым формам)	Очная	Заочная
Семестр (курс) изучения дисциплины	4 семестр	2 курс
Общая трудоемкость, всего, час	180	180
зачетные единицы	5	5
1. Контактная работа		
1.1 Контактная аудиторная работа (всего)	58,4	28,1
В том числе:		
Лекции (Лек)	28	8
Лабораторные занятия (<i>Лаб</i>)	14	6
Практические занятия (Πp)	14	4
Установочные занятия (УЗ)	-	2
Предэкзаменационные консультации (Конс)	2	-
Текущие консультации (<i>TK</i>)	-	7,5
1.2 Промежуточная аттестация		
Зачет (КЗ)	-	-
Экзамен (КЭ)	0,4	0,4
Выполнение курсовой работы (проекта) (КНКР)	-	-
Выполнение контрольной работы (ККН)	-	0,2
1.3 Контактная внеаудиторная работа (контроль)	14	4
2. Самостоятельная работа обучающихся (всего)	107,6	147,9
В том числе:		
Самостоятельная работа по проработке лекционного материала	30	40
Самостоятельная работа по подготовке к лабораторным и практическим занятиям	30	40
Работа над темами (вопросами), вынесенными на самостоятельное изучение	31,6	41,9
Самостоятельная работа по видам индивидуальных заданий: подготовка реферата (контрольной работы)	-	10
Подготовка к экзамену	16	16

4.2 Общая структура дисциплины и виды учебной работы

	Объе	Объемы видов учебной работы по формам обучения, час							
	Очна	я форі	ма обу	чения	Заочн	Заочная форма обучения			
Наименование модулей и разделов дисциплины	Всего	Лекции	Лабораторно- практ.занятия	Самостоятель- ная работа	Всего	Лекции	Лабораторно- практ. занятия	Самостоятель- ная работа	
l	2	3	4	6	7	8	9	11	

	Объе	мы ви	дов у		работы я, час	по ф	ормам (обуче-
	Очна	я форі	ма обу	чения	Заочн	ая фор	эма обу	чения
Наименование модулей и разделов дисциплины	Всего	Лекции	Лабораторно- практ.занятия	Самостоятель- ная работа	Всего	Лекции	Лабораторно- практ. занятия	Самостоятель- ная работа
l	2	3	4	6	7	8	9	11
Модуль 1 «Основы расчета на прочность и жест- кость при простых видах деформации»	84	16	18	50	85	5	10	70
1.Основные понятия	3	l	-	2	5	-	-	5
2. Геометрические характеристики поперечных сечений	3	l	-	2	5	-	-	5
3. Внутренние силовые факторы: метод сечений, виды деформаций, построение эпюр внутренних силовых факторов	6	2	,	4	11	1	•	10
4. Напряжения и деформации	5	1	-	4	4	-	-	4
5. Экспериментальное изучение механических свойств материалов при статических испытаниях	16	2	6	8	17	l	6	10
6. Определение нормальных напряжений в поперечных сечениях бруса (растяжение-сжатие, изгиб), определение касательных напряжений в поперечных сечениях бруса (сдвиг-срез, кручение, изгиб)	20	4	2+6	8	13	1	4	8
7. Расчеты на прочность статически определимых конструкций	9	1	2	6	8	•	•	8
8. Определение перемещений и расчеты на жесткость статически определимых конструкций	10	2	2	6	7	1	•	6
9. Основы расчета статически неопределимых конструкций	5	1	-	4	9	1	•	8
10. Элементы рационального проектирования простейших стержневых систем	5	1		4	4	•	•	4
Итоговый контроль по модулю	2	-	_	2	2	_	_	2
Модуль 2 «Основы расчета на прочность, жест- кость и устойчивость при сложных ви- дах деформации»	79,6	12	10	57,6	80,9	3	•	77,9
1. Анализ напряженно-деформированного состояния в точке тела	8,6	1	-	7,6	7,9	-	-	7,9
2. Сложное сопротивление	15	l	2+2	10	11	1	-	10
3. Изгиб с кручением валов	10	2	2	6	11	1	-	10
4. Устойчивость стержней	14	2	2+2	8	11	l	-	10

	Объе	мы ви	ідов уч		работыя, час	по фо	ормам (буче-
	Очная	эма обу	чения					
Наименование модулей и разделов дисциплины	v Bcero	Лекции	Лабораторно- практ.занятия	Самостоятель- ная работа	Всего	Лекции	Лабораторно- практ. занятия	Самостоятель- ная работа
1	2	3	4	6	7	8	9	11
5. Расчеты на прочность и жесткость при динамических нагрузках	10	2	-	8	10	-	-	10
6. Примеры расчета по несущей спо- собности: растяжение-сжатие, круче- ние, изгиб	7	1	-	6	10	ı	ı	10
7. Экспериментальные методы исследования деформаций: тензометрирование и др.	7	1	•	6	10	ı	•	10
8. Надежность и сопротивление материалов. Методы экономического обоснования инженерных решений в сопротивлении материалов	6	2	-	4	8	ı	ı	8
Итоговый контроль по модулю	2	•	-	2	2	•	-	2
Предэкзаменационные консультации			2				-	
Текущие консультации			-				7,5	
Установочные занятия			-				2	
Промежуточная аттестация		θ	,4			$\theta,2$	+0,4	
Контактная аудиторная работа (всего)	58,4	28	28	-	28,1	8	10	-
Контактная внеаудиторная работа (всего)	14 4							
Самостоятельная работа (всего)	107,6 147,9							
Общая трудоемкость	180 180							

4.3 Содержание дисциплины

Наименование и содержание модулей и разделов дисциплины

Модуль 1

«Основы расчета на прочность и жесткость при простых видах деформации»

1. Основные понятия

1.1 Определение и задачи курса; история развития науки о сопротивлении материалов; гипотезы теории; реальный объект и расчетная схема; внешние и внутренние силы; напряжения и деформации; закон Гука; общий план расчета на прочность

2. Геометрические характеристики поперечных сечений

- 2.1 Виды геометрических характеристик, формулы преобразования моментов инерции, геометрические характеристики простых, сложных и составных сечений; понятие о прокатных профилях
- 3. Внутренние силовые факторы: метод сечений, виды деформаций, построение эпюр внутренних силовых факторов

Наименование и содержание модулей и разделов дисциплины

- 3.1 Метод сечений, виды нагружений и деформаций, построение эпюр внутренних силовых факторов
- 4. Напряжения и деформации
- 4.1 Виды напряжений, связь между упругими деформациями и напряжениями
- 5. Экспериментальное изучение механических свойств материалов при статических испытаниях
- 5.1 Виды испытаний, растяжение-сжатие, сдвиг, кручение
- 6. Определение нормальных напряжений в поперечных сечениях бруса (растяжение-сжатие, изгиб), определение касательных напряжений в поперечных сечениях бруса (сдвиг-срез, кручение, изгиб)
- 6.1 Нормальные напряжения в поперечных сечениях бруса (растяжение-сжатие, плоский изгиб)
- 6.2 Касательные напряжения в поперечных сечениях бруса (сдвиг-срез, кручение, поперечный изгиб)
- 7. Расчеты на прочность статически определимых конструкций
- 7.1 Методы расчета, коэффициент запаса прочности при простых видах деформации. Понятие о концентрации напряжений
- 8. Определение перемещений и расчеты на жесткость статически определимых конструкций
- 8.1 Правило Верещагина для вычисления интеграла Максвелла-Мора
- 8.2 Метод начальных параметров
- 9. Основы расчета статически неопределимых конструкций
- 9.1 Метод сравнения деформаций
- 9.2 Метод сил, эффект введения статической неопределимости
- 10. Элементы рационального проектирования простейших стержневых систем
- 10.1 Растяжение-сжатие, сдвиг, кручение, плоский изгиб

Модуль 2

«Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»

1. Анализ напряженно-деформированного состояния в точке тела

1.1 Задачи и виды напряженно-деформированных состояний; одно-, двух- и трехосное напряженно-деформированное состояние

2. Сложное сопротивление

2.1 Сдвиг с кручением, изгиб с растяжением-сжатием, косой изгиб; расчет на прочность при сложном сопротивлении

3. Сложные случаи расчета на прочность

3.1 Расчет по теориям прочности: классические и обобщенная теории прочности; изгиб с кручением (валы круглого и некруглого сечения); расчет коленчатого вала

4. Устойчивость стержней

- 4.1 Продольный изгиб: основные понятия; расчет по формулам Эйлера и Ясинского; график критических напряжений; практический способ расчета на устойчивость
- 4.2 Продольно-поперечный изгиб: случаи продольно-поперечного изгиба; приближенный метод решения задачи

5. Расчеты на прочность и жесткость при динамических нагрузках

5.1 Расчет движущихся с ускорением элементов конструкций: основные понятия; коэффициент динамичности; определение напряжений; расчет вращающегося кольца, расчет шатуна КШ механизма.

Удар: линейный продольный и поперечный удар; скручивающий удар; определение деформаций и напряжений; коэффициент динамичности; учет массы упругой системы; меха-

Наименование и содержание модулей и разделов дисциплины

нические свойства материалов

- 5.2 Колебания: классификация колебаний; определение частоты собственных колебаний системы с одной степенью свободы; определение напряжений и деформаций при вынужденных колебаниях системы с одной степенью свободы; режимы работы машин и конструкций
- 5.3 Усталость: основные понятия; повторно-переменные нагрузки и их характеристики; опытное определение предела выносливости; факторы, вли-яющие на предел выносливости; определение коэффициента запаса при симметричном цикле; диаграмма предельных амплитуд и ее схематизация; определение коэффициента запаса при асимметричном цикле; расчеты на прочность при простом и сложном нагружении

6. Примеры расчета по несущей способности: растяжение-сжатие, кручение, изгиб

- 6.1 Основные положения; примеры расчетов по допускаемым нагрузкам при растяжениисжатии, кручении и плоском изгибе, их эффективность в сравнении с расчетом по допускаемым напряжениям
- 7. Экспериментальные методы исследования деформаций
- 7.1 Метод электротензометрирования, метод лаковых покрытий и др.
- 8. Надежность и сопротивление материалов. Методы экономического обоснования инженерных решений в сопротивлении материалов
- 8.1 Методы экономического обоснования принятия инженерных решений; проблемы и мероприятия повышения прочностной надежности СХТ.

V ОЦЕНКА ЗНАНИЙ И ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

5.1 Формы контроля знаний, рейтинговая оценка и формируемые компетенции (очная форма обучения)

№ п/п			Объег	м учеб	бной ра	аботы	-ta-	ЭВ	ЭВ
	Наименование рейтингов, модулей и блоков	Формируемые компетенции	Общая твудоемкость	Лекции	Лаборпракт. занятия	Самостоятельная работа	Форма контроля зна-	Количество баллов (min)	Количество баллов (max)
Всего	по дисциплине	ПК 2.2, ПК 2.3	180	28	28	107, 6	Экзамен	51	100
I. Pyé	бежный рейтинг	-	•	•	-	•	Сумма баллов за модули	31	60
1 -	иль 1 «Основы расчета на ность и жесткость при простых и деформации»	IПК 2-2 I	84	16	18	50	-	16	30
1.	Основные понятия	ПК 2.2, ПК 2.3	3	l	-	2	Устный опрос	1	2
2.	Геометрические характери- стики поперечных сечений	ПК 2.2. ПК 2.3	3	l	-	2	Устный опрос	I	2

3.	Внутренние силовые факторы: метод сечений, виды деформаций, построение эпюр внутренних силовых факторов	пиээ	6	2	-	4	Устный опрос	1	2
4.	Напряжения и деформации	ПК 2.2, ПК 2.3	5	1	-	4	Устный опрос	1	2
5.	Экспериментальное изучение механических свойств материалов при статических испытаниях		16	2	6	8	Устный опрос	2	3
6.	Определение нормальных напряжений в поперечных сечениях бруса (растяжениесжатие, изгиб), определение касательных напряжений в поперечных сечениях бруса (сдвиг-срез, кручение, изгиб)	ПК 2.2. ПК 2.3	20	4	2+6	8	Устный опрос	2	4
7.	Расчеты на прочность статически определимых конструкций	HTK 2-2-1	9	1	2	6	Устный опрос	2	4
8.	Определение перемещений и расчеты на жесткость статически определимых конструкций		10	2	2	6	Устный опрос	2	4
9.	Основы расчета статически неопределимых конструкций		5	l	-	4	Устный опрос	2	4
10.	Элементы рационального проектирования простейших стержневых систем	пкээ	5	1	-	4	Устный опрос	2	3
Итого	вый контроль по модулю		2	-	-	2	Тест, ситуац. задача	100	
прочн	ль 2 «Основы расчета на юсть, жесткость и устойчи- при сложных видах деформа-	ПК 2.2,	79,6	12	10	57,6	-	15	30
1.	Анализ напряженно-деформированного состояния в точке тела	ПК 2.2, ПК 2.3	8,6	1	-	7,6	Устный опрос	I	2
2.	Сложное сопротивление	ПК 2.2, ПК 2.3	15	l	2+2	10	Устный опрос	2	4
3.	Сложные случаи расчета на прочность	ПК 2.2, ПК 2.3	10	2	2	6	Устный опрос	2	4
4.	Устойчивость стержней	ПК 2.2. ПК 2.3	14	2	2+2	8	Устный опрос	2	4
5.	Расчеты на прочность и жесткость при динамических нагрузках		10	2	-	8	Устный опрос	2	4
6.	Примеры расчета по несущей способности: растяжение-сжатие, кручение, изгиб	ПК 2.2. ПК 2.3	7	l	-	6	Устный опрос	2	4

7.	Экспериментальные методы исследования деформаций: тензометрирование и др.	ПК 2.2, ПК 2.3	7	1	-	6	Устный опрос	2	4
8.	Надежность и сопротивление материалов. Методы экономического обоснования инженерных решений в сопротивлении материалов	ПК 2.2. ПК 2.3	6	2	1	4	Устный опрос	2	4
Итог	говый контроль по модулю	-	2	•	•	2	Тест, ситуац. задача	1	-
II. T	ворческий рейтинг	-	-	•	-	-	-	2	5
III.	Рейтинг личностных качеств	-	-	-	-	-	-	3	10
IV . Рейтинг сформированности прикладных практических требований		-	-	-	-	-	-	+	+
V. Промежуточная аттестация		-	-	-	-	-	Экзамен	15	25

5.2 Оценка знаний студента

5.2.1 Основные принципы рейтинговой оценки

Оценка знаний по дисциплине осуществляется согласно «Положению о балльно-рейтинговой системе оценки обучения в Φ ГБОУ ВО Белгородский Γ АУ».

Уровень развития компетенций оценивается с помощью рейтинговых баллов.

Рейтинги	Характеристика рейтингов	Максимум баллов
Рубежный	Отражает работу студента на протяжении всего периода изучения дисциплины. Определяется суммой баллов, которые студент получит по результатам изучения каждого модуля.	60
Творческий	Результат выполнения студентом индивидуального творческого задания различных уровней сложности, в том числе, участие в различных конференциях и конкурсах на протяжении всего курса изучения дисциплины.	5
Рейтинг лич- ностных ка- честв	Оценка личностных качеств обучающихся, проявленных ими в процессе реализации дисциплины (модуля) (дисциплинированность, посещаемость учебных занятий, сдача вовремя контрольных мероприятий, ответственность, инициатива и др.)	10
Рейтинг сфор- мированности прикладных практических требований	Оценка результата сформированности практических навыков по дисциплине (модулю), определяемый преподавателем перед началом проведения промежуточной аттестации и оценивается как «зачтено» или «не зачтено».	+
Промежуточ- ная аттестация	Является результатом аттестации на окончательном этапе изучения дисциплины по итогам сдачи зачета или экзамена. Отражает уровень освоения информационно-теоретического	25

	компонента в целом и основ практической деятельности в частности.	
Итоговый рейтинг	Определяется путём суммирования всех рейтингов	100

Итоговая оценка компетенций студента осуществляется путём автоматического перевода баллов общего рейтинга в стандартные оценки.

Неудовлетворительно	Удовлетворительно	Хорошо	Отлично	
менее 51 балла	51-67 баллов	67,1-85 баллов	85,1-100 баллов	

5.2.3 Критерии оценки знаний студента на экзамене

На экзамене студент отвечает в письменной форме на вопросы экзаменационного билета (1 – теоретический вопрос общего характера, 2 – частный теоретический вопрос, 3 – ситуационная задача).

Количественная оценка на экзамене определяется на основании следующих критериев:

- оценку «отлично» заслуживает студент, показавший всестороннее систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой; как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала;
- оценку «хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе; как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности;
- оценку «удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой; как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя;
- оценка «неудовлетворительно» выставляется студенту, обнаружившему проблемы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий; как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжать обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.
- 5.3 Фонд оценочных средств. Типовые контрольные задания или иные материалы, необходимые для оценки формируемых компетенций по дисциплине (приложение 1)

VI УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Основная учебная литература

- 1. Кривошапко, С.Н. Сопротивление материалов: лекции, семинары, расчетнографические работы [Электронный ресурс]: учебник для бакалавров / С. Н. Кривошапко. Электрон. текстовые дан. М.: Юрайт, 2013. 413 с. (Бакалавр. Базовый курс). ISBN 978-5-9916-2122-9 Режим доступа: <a href="http://lib.belgau.edu.ru/cgi-bin/irbis64r-15/cgiirbis-64.exe?LNG=&C21COM=2&I21DBN=BOOKS&P21DBN=BOOKS&Z2-1ID=192414300388112218&Image_file_name=Ucheb%5CKrivoshapko%5FSoprotivlenie%2Epdf&IMAGE_FILE_DOWNLOAD=1
- 2. Молотников, В.Я. Курс сопротивления материалов [Электронный ресурс]: учебное пособие / В.Я. Молотников. Электрон. дан. Санкт-Петербург: Лань, 2016. 384 с. Режим доступа: https://e.lanbook.com/book/71756

6.2 Дополнительная литература

- 1. Пастухов, А.Г. Расчеты на прочность и жесткость при простых видах деформации. Сопротивление материалов: учебное пособие / А.Г. Пастухов. Белгород: Изд-во ФГБОУ ВО Белгородский ГАУ, 2017. 72 с. Режим доступа: http://lib.belgau.edu.ru/cgibin/irbis64r 15/cgiirbis 64.exe?LNG=&C21COM=F&I21DBN=BOOKS READER&P21DBN=BOOKS&Z21ID=192515400713562412&Image file name=OnlyEC2%5CPastuhovA%2EG%2ERaschetyi%5Fprochnost%5Fzhestkosi%2ESoprotivlenie%5Fmaterialov%2EUcheb%2Eposobie%2Epdf&mfn=56441&FT_REQUEST=%D0%9F%D0%90%D0%A1%D0%A2%D0%A3%D0%A5%D0%9E%D0%92%20%D0%90%20%D0%93&CODE=9999&PAGE=1
- 2. Пачурин, Г.В. Сопротивление материалов. Усталость и ползучесть материалов при высоких температурах: Учебное пособие / Г. В. Пачурин, С. М. Шевченко, В. Н. Дубинский. Москва: Издательство "ФОРУМ"; Москва: ООО "Научно-издательский центр ИН-ФРА-М", 2015. 128 с. Режим доступа: http://znanium.com/bookread2.php?book=501983

6.2.1 Периодические издания

- 1. Тракторы и сельхозмашины. Режим доступа: http://tismash@mospolytech.ru/
- 2. Ремонт, восстановление, модернизация. Режим доступа: http://www.nait.ru/journals/
- 3. Механизация и электрификация сельского хозяйства/ Режим доступа: http://elibrary.ru/title_about.asp?id=7895
- 4. Техника в сельском хозяйстве. Режим доступа: http://elibrary.ru/title_about.asp?id=9151

6.3 Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине

Самостоятельная работа студентов заключается в инициативном поиске информации о наиболее актуальных проблемах (механические свойства и характеристики различных материалов, применяемых в сельскохозяйственных машинах, новые методики расчета конструкций и их элементов, прикладное программное обеспечение для решения задач прочности и др.), которые имеют большое практическое значение и являются предметом научных дискуссий в рамках изучаемой дисциплины.

Самостоятельная работа планируется в соответствии с календарными планами рабочей программы по дисциплине и в методическом единстве с тематикой учебных аудиторных занятий.

6.3.1 Методические указания по освоению дисциплины

Вид учебных занятий	Организация деятельности студента			
Лекции	Проработка рабочей программы, уделяя особое внимание це-			

	1
	лям и задачам, структуре и содержанию дисциплины.
	Написание конспекта лекций: кратко, схематично, последова-
	тельно фиксировать основные положения, выводы, формулиров-
	ки, обобщения; помечать важные мысли, выделять ключевые сло-
	ва, термины.
	Проверка терминов, понятий с помощью энциклопедий, сло-
	варей, электронных баз, справочников с выписыванием толкова-
	ний в конспект.
	Обозначить вопросы, термины, материал, который вызывает
	трудности, пометить и попытаться найти ответ в рекомендуемой
	литературе. Если самостоятельно не удается разобраться в мате-
	риале, необходимо сформулировать вопрос и задать преподавате-
	лю на консультации, на практическом занятии.
	Внимательно ознакомиться с рабочей программой дисципли-
	ны, календарно-тематическими планами лекций, лабораторных и
	практических занятий.
	Уделить внимание понятиям, которые лектор выделяет в про-
	цессе постановки темы и раскрытия плана лекций, в частности,
	дается понятие видов деформаций, классификация видов нагру-
	зок, материалов, геометрических форм объектов, внутренних си-
	ловых факторов, напряжений, деформаций и др.
	Проработка рабочей программы с уклоном на материал при-
	менительно к лабораторным работам в курсе дисциплины.
	Изучение и проработка источников (лабораторный практи-
	кум, рабочая тетрадь, справочный материал из интернета и др.).
	Работа с конспектом лекций, подготовка ответов к теоретиче-
Лабораторные	ской части лабораторных работ, просмотр рекомендуемой литера-
работы	туры, работа с содержанием теоретического материала в соответ-
раооты	
	тематическому плану.
	Просмотр видеоматериала по заданной теме, анализ алгорит-
	ма выполнения работ, изучение методики испытаний и обработки
	результатов, анализ результатов и формулировка вывода.
	Проработка рабочей программы, уделяя особое внимание це-
	лям и задачам структуре и содержанию дисциплины.
	Изучение и проработка источников (сборник задач, справоч-
	ник, решебник задач и др.).
Практические	Работа с конспектом лекций, подготовка ответов к контроль-
занятия	ным вопросам, просмотр рекомендуемой литературы, работа с со-
	держанием теоретического материала в соответствии с тематикой
	практических занятий по календарно-тематическому плану.
	Прослушивание аудио- и просмотр видеозаписей по заданной
	теме, решение расчетно-графических заданий, решение задач по
	алгоритму и др.
	Знакомство с основной и дополнительной литературой,
	включая справочные издания, конспект основных положений,
	терминов, сведений, требующих для запоминания и являющихся
Самостоятельная	основополагающими в этой теме.
работа	Проработка материала лабораторных работ и практических
	задач (подготовка к занятиям, оформление, написание тестов,
	подготовка к защите).
	Составление аннотаций к прочитанным литературным источ-

	никам и др.				
	Проработка рабочей программы, уделяя особое внимание				
	контрольным вопросам по модулям дисциплины и к экзамену.				
	При подготовке к экзамену необходимо ориентироваться на				
Подготовка	конспект лекций, рабочую тетрадь по лабораторным работам, тет-				
к экзамену	радь по решению задач на практических занятиях, рекомендуе-				
	мую основную и дополнительную литературу и др.				
	Проработка фонда оценочных средств, в том числе, при те-				
	кущем и рубежном контроле.				

6.3.2 Видеоматериалы

- 1. Каталог учебных видеоматериалов на официальном сайте ФГБОУ ВО Белгородский ГАУ Режим доступа: http://bsaa.edu.ru/InfResource/library/video/
- 6.4 Ресурсы информационно-телекоммуникационной сети «Интернет», современные профессиональные базы данных, в том числе международные реферативные базы данных научных изданий, информационные справочные системы
- 1. Международная реферативная база данных «Scopus» Режим доступа: https://www.scopus.com
- 2. Международная реферативная база данных «Web of Science» Режим доступа: http://apps.webofknowledge.com
 - 3. СПС Консультант Плюс: Версия Проф Режим доступа: http://www.consultant.ru
- 4. Базы данных и аналитические публикации на портале «Университетская информационная система Россия». Режим доступа: https://uisrussia.msu.ru/
- 5. Международная информационная система по сельскому хозяйству и смежным с ним отраслям «AGRIS (Agricultural Research Information System)». Режим доступа: http://agris.fao.org
- 6. Коллекция электронных журналов издательства SAGE: В коллекцию входят лучшие мировые журналы по естественным наукам, инженерии, медицине, общественным наукам. Режим доступа: http://journals.sagepub.com/

VII МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Помещения, укомплектованные специализированной мебелью, оснащенные оборудованием и техническими средствами обучения, служащими для представления учебной информации большой аудитории

Виды помещений	Оборудование и технические средства обучения		
Учебная аудитория для	Специализированная мебель для обучающихся на 100 поса-		
проведения занятий лек-	дочных мест.		
ционного типа № 40	Рабочее место преподавателя: стол, стул, кафедра-трибуна		
	напольная, доска меловая настенная.		
	Набор демонстрационного оборудования:		
	Системный блок, проектор BenQ, экран для демонстрации, 2		
	акустические колонки.		
Учебная аудитория для	Специализированная мебель для обучающихся на 28 поса-		
проведения занятий лек-	дочных мест.		
ционного типа, семинар-	Рабочее место преподавателя: стол, стул, кафедра-трибуна		
ского типа, групповых и	напольная, доска меловая настенная.		
индивидуальных консуль-	Набор демонстрационного оборудования:		

таций, текущего контроля	- системный блок компьютера;
и промежуточной атте-	- проектор;
стации № 6	- экран для проектора;
	- 2 акустические колонки.
	Информационные стенды (планшеты настенные):
	- образцы для испытаний на разрыв;
	- образцы для испытаний на кручение;
	- портреты ученых в области сопротивления материалов;
	- комплект учебных плакатов по сопротивлению материалов.
	Лабораторное оборудование (испытательные машины): ма-
	шина разрывная МР-100, машина для испытаний на разрыв,
	сжатие и изгиб Р-5, машина для испытаний на кручение КМ-
	1-50, машина для испытаний на усталость УКИ-10М, уста-
	новка лабораторная СМУ, маятниковый копр 2121КМ-0,05.
Помещения для самостоя-	Специализированная мебель; комплект компьютерной техни-
тельной работы обучаю-	ки в сборе (системный блок: Asus P4BGL-MX\Intel Celeron,
щихся с возможностью	1715 MHz\256 M6 PC2700 DDR SDRAM\ST320014A (20 Гб,
подключения к Интернету	5400 RPM, Ultra-ATA/100)\ NEC CD-ROM CD-3002A\Intel(R)
и обеспечением доступа в	82845G/GL/GE/PE/GV Graphics Controller, монитор: Proview
электронную информаци-	777(N) / 786(N) [17" CRT], клавиатура, мышь.) в количестве
онно-образовательную	10 единиц с возможностью подключения к сети Интернет и
среду Белгородского ГАУ	обеспечения доступа в электронную информационнообразо-
(читальные залы библио-	вательную среду Белгородского ГАУ; настенный плазменный
теки)	телевизор SAMSUNG PS50C450B1 Black HD (диагональ 127
	см); аудиовидео кабель HDMI
Помещение для хранения	Специализированная мебель: стол, стеллажи.
и профилактического об-	
служивания учебного	
оборудования № 37	

7.2. Комплект лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

Виды помещений	Оборудование
Учебная аудитория для	MS Windows WinStrtr 7 Acdmc Legalization RUS OPL NL. До-
проведения занятий лек-	говор №180 от 12.02.2011. Срок действия лицензии – бес-
ционного типа № 40	срочно; MS Office Std 2010 RUS OPL NL Acdmc. Договор
	№180 от 12.02.2011. Срок действия лицензии – бессрочно;
	Anti-virus Kaspersry Endpoint Security для бизнеса (Сублицен-
	зионный договор №42 от 06.12.2019) - 522 лицензия. Срок
	действия лицензии по 01.01.2021 (отечественное ПО).
	APM WinMachine 17 «Прочностной расчет и проектирование
	конструкций, деталей машин и механизмов», (лицензионный
	договор № ФПО-20/680/2019-33-19 от 24.09.2018 г.) - учеб-
	ный класс на 30 сетевых учебных и 2 локальные преподава-
	тельские лицензию. Срок действия лицензии – бессрочно.
	(отечественное ПО).
	Учебный комплект программного обеспечения: Пакет обнов-
	ления КОМПАС-3D до версий V16 и V17. (сублицензионный
	договор № МЦ-15-00330-0641 от 14 сентября 2015 г.) - 50
	мест. Срок действия лицензии – бессрочно. (отечественное
	ΠΟ)

Учебная аудитория для проведения занятий лекционного типа, семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации № 6

MS Windows WinStrtr 7 Acdmc Legalization RUS OPL NL. Договор №180 от 12.02.2011. Срок действия лицензии — бессрочно; MS Office Std 2010 RUS OPL NL Acdmc. Договор №180 от 12.02.2011. Срок действия лицензии — бессрочно; Anti-virus Kaspersry Endpoint Security для бизнеса (Сублицензионный договор №28 от 08.11.2018) - 522 лицензия. Срок действия лицензии с 08.11.2018 по 08.11.2019

АРМ WinMachine 17 «Прочностной расчет и проектирование конструкций, деталей машин и механизмов», (лицензионный договор № ФПО-20/680/2019-33-19 от 24.09.2018 г.) - учебный класс на 30 сетевых учебных и 2 локальные преподавательские лицензию. Срок действия лицензии – бессрочно. (отечественное ПО)

Учебный комплект программного обеспечения: Пакет обновления КОМПАС-3D до версий V16 и V17. (сублицензионный договор № МЦ-15-00330-0641 от 14 сентября 2015 г.) - 50 мест. Срок действия лицензии – бессрочно. (отечественное ПО)

Помещения для самостоятельной работы обучающихся с возможностью подключения к Интернету и обеспечением доступа в электронную информационно-образовательную среду Белгородского ГАУ (читальные залы библиотеки)

MS Windows WinStrtr 7 Acdmc Legalization RUS OPL NL. Договор №180 от 12.02.2011. Срок действия лицензии — бессрочно; MS Office Std 2010 RUS OPL NL Acdmc. Договор №180 от 12.02.2011. Срок действия лицензии — бессрочно; Anti-virus Kaspersry Endpoint Security для бизнеса (Сублицензионный договор №42 от 06.12.2019) - 522 лицензия. Срок действия лицензии по 01.01.2021 (отечественное Π O).

АРМ WinMachine 17 «Прочностной расчет и проектирование конструкций, деталей машин и механизмов», (лицензионный договор № ФПО-20/680/2019-33-19 от 24.09.2018 г.) - учебный класс на 30 сетевых учебных и 2 локальные преподавательские лицензию. Срок действия лицензии — бессрочно. (отечественное ПО).

Учебный комплект программного обеспечения: Пакет обновления КОМПАС-3D до версий V16 и V17. (сублицензионный договор № МЦ-15-00330-0641 от 14 сентября 2015 г.) - 50 мест. Срок действия лицензии — бессрочно. (отечественное Π O)

Помещение для хранения и профилактического обслуживания учебного оборудования №

Я |

7.3. Электронные библиотечные системы и электронная информационно-образовательная среда

- ЭБС «ZNANIUM.COM», договор на оказание услуг № 0326100001919000019 с Обществом с ограниченной ответственностью «ЗНАНИУМ» от 11.12.2019;
- ЭБС «AgriLib», лицензионный договор №ПДД 3/15 на предоставление доступа к электронно-библиотечной системе ФГБОУ ВПО РГАЗУ от 15.01.2015;
- ЭБС «Лань», договор №27 с Обществом с ограниченной ответственностью «Издательство Лань» от 03.09.2019;

— ЭБС «Руконт», договор №ДС-284 от 15.01.2016 с открытым акционерным обществом «ЦКБ»БИБКОМ», с обществом с ограниченной ответственностью «Агентство «Книга-Сервис».

VIII ОСОБЕННОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) ДЛЯ ИНВА-ЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В случае обучения в университете инвалидов и лиц с ограниченными возможностями здоровья учитываются особенности психофизического развития, индивидуальные возможности и состояние здоровья таких обучающихся.

Образование обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечены печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья. Обучение инвалидов осуществляется также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).

Для лиц с ограниченными возможностями здоровья по слуху возможно предоставление учебной информации в визуальной форме (краткий конспект лекций; тексты заданий). На аудиторных занятиях допускается присутствие ассистента, а также сурдопереводчиков и (или) тифлосурдопереводчиков. Текущий контроль успеваемости осуществляется в письменной форме: обучающийся письменно отвечает на вопросы, письменно выполняет практические задания. Доклад (реферат) также может быть представлен в письменной форме, при этом требования к содержанию остаются теми же, а требования к качеству изложения материала (понятность, качество речи, взаимодействие с аудиторией и т. д.) заменяются на соответствующие требования, предъявляемые к письменным работам (качество оформления текста н списка литературы, грамотность, наличие иллюстрационных материалов и т.д.). Промежуточная аттестация для лиц с нарушениями слуха проводится в письменной форме, при этом используются общие критерии оценивания. При необходимости время подготовки к ответу может быть увеличено.

Для лиц с ограниченными возможностями здоровья по зрению университетом обеспечивается выпуск и использование на учебных занятиях альтернативных форматов печатных материалов (крупный шрифт или аудиофайлы) а также обеспечивает обучающихся надлежащими звуковыми средствами воспроизведения информации (диктофонов и т.д.). Допускается присутствие ассистента, оказывающего обучающемуся необходимую техническую помощь. Текущий контроль успеваемости осуществляется в устной форме. При проведении промежуточной аттестации для лиц с нарушением зрения тестирование может быть заменено на устное собеседование по вопросам.

Для лиц с ограниченными возможностями здоровья, имеющих нарушения опорно- двигательного аппарата материально-технические условия университета обеспечивают возможность беспрепятственного доступа обучающихся в учебные помещения, а также пребывания в них (наличие пандусов, поручней, расширенных дверных проемов, лифтов; наличие специальных кресел и других приспособлений). На аудиторных занятиях, а также при проведении процедур текущего контроля успеваемости и промежуточной аттестации лицам с ограниченными возможностями здоровья, имеющим нарушения опорно-двигательного аппарата могут быть предоставлены необходимые технические средства (персональный компьютер, ноутбук или другой гаджет); допускается присутствие ассистента (ассистентов), оказывающего обучающимся необходимую техническую помощь (занять рабочее место, передвигаться по аудитории, прочитать задание, оформить ответ, общаться с преподавателем).

VIII ПРИЛОЖЕНИЯ

Приложение 1

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАР-СТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени В.Я.ГОРИНА»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ для проведения промежуточной аттестации обучающихся

по дисциплине (модулю) Сопротивление материалов

Направление подготовки/специальность: <u>35.03.06 - Агроинженерия</u> шифр. наименование

Направленность (профиль): Технический сервис в АПК

Квалификация: бакалавр

Год начала подготовки: 2020

Майский, 2020

1. Перечень компетенций, соотнесенных с индикаторами достижения компетенций, с указанием этапов их формирования в процессе освоения образовательной программы

Код контро-	Формулировка кон- тролируемой ком-	Индикаторы достижения					
лируе- мой компе- тен-ции	петенции	компетенции	ния компе- тенции		делов дисциплины	Текущий контроль	Промежуточная аттестация
	Способен участво- вать в проектиро- вании технических систем обеспече-	ПК 2.2 Производит расчеты при проектирова- нии техниче- ских систем,	Первый этап (поро- говой уро- вень)	Знать: механические свойства и характеристики материалов, методики их определения; теорию расчета геометрических характеристик плоских поперечных сечений брусьев;	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Устный опрос, тестирование, ситуационная задача Устный опрос, тестирование, ситуационная задача	Экзамен
ПК 2	ния технологиче- ских процессов сельскохозяйствен- ного производства	систем технического обсолуживания сельскохозяйственной техники	Второй этап (продвину- тый уро- вень)	Уметь: определять внутренние силовые факторы при различных видах деформаций элементов конструкций и строить их эпюры; выбирать материал деталей в зависимости от характера нагружения и условий	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных	Устный опрос, тестирование, ситуационная задача Устный опрос, тестирование, ситуационная задача	Экзамен
				эксплуатации ма- шин;	видах деформа- ции»		

	Третий этап (высокий уровень)	Владеть: методи- кой расчета статиче- ски определимых и неопределимых кон- струкций; методами экспериментального определения напря- жений и деформа- ций в деталях;	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации» Модуль 1. «Осно-	Устный опрос, тестирование, ситуационная задача Устный опрос, тестирование, ситуационная задача Устный опрос	Экзамен
ПК 2.3 Способен участвовать в проектирова- нии техниче- ских систем обеспечения технологиче- ских процес- сов сельско- хозяйственно- го производ- ства	Первый этап (поро- говой уро- вень)	формулы напряжений и деформаций для различных видов деформаций с учетом вида нагружения элементов конструкций (условия прочности, жесткости и устойчивости); основы назначения допускаемых напряжений и коэффициента запаса прочности; условия проведения опытных исследований механических	вы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	опрос, те- стирование, ситуацион- ная задача Устный опрос, те- стирование, ситуацион- ная задача	Экзамен

(пр т 	орой этап родвину- гый уро- вень)	Уметь: производить расчеты на прочность, жесткость и устойчивость элементов машин и оборудования; пользоваться терминологией дисциплины; пользоваться нормативнотехнической документацией;	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Устный опрос, тестирование, ситуационная задача Устный опрос, тестирование, ситуационная задача	Экзамен
(B.	етий этап высокий 7ровень)	Владеть: прикладными методами с целью проведения проверочных расчетов, проектных расчетов и определения несущей способности конструкций; способами сопоставительного анализа опытных данных.	Модуль 1. «Основы расчета на прочность и жесткость при простых видах деформации» Модуль 2. «Основы расчета на прочность, жесткость и устойчивость при сложных видах деформации»	Устный опрос, тестирование, ситуационная задача Устный опрос, тестирование, ситуационная задача	Экзамен

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

	Планируемые ре- зультаты обучения,	Уровни и критері	ии оценивания результатов обучения, шкалы оценивания				
Компетенция	соотнесенные с ин- дикаторами дости- жения компетенции	Компетентность не сформирована	Пороговый уровень компетентности	Продвинутый уро- вень компетент- ности	Высокий уровень компетентности		
	(показатели дости- жения заданного уровня компетен- ции)	Неудовлетворитель- но	Удовлетворитель- но	Хорошо	Отлично		
	ПК 2.2	Не способен исполь-	Частично способен	Владеет способно-	Свободно владеет		
	Производит расчеты	зовать основные зако-	решать инженерные	<i>стью</i> решать ин-	способностью ре-		
	при проектировании технических систем,	ны механики при решении инженерных	задачи с использованием основных	женерные задачи с использованием	шения инженерных задач с использо-		
	систем технического	задач.	законов механики.	основных законов	ванием основных		
	обслуживания сель-			механики.	законов механики.		
	скохозяйственной						
ПК 2	техники						
Способен участвовать	Знать: механические	Допускает грубые	Может изложить	Знает основы ме-	Аргументировано		
в проектировании	свойства и характери-	ошибки при работе с	понятие механиче-	ханических свойств	<i>оперирует</i> меха-		
технических систем	стики материалов, ме-	механическими харак-	ских свойств и ха-	и характеристик ма-	ническими свой-		
обеспечения техноло-	тодики их определе-	теристиками материа-	рактеристик матери-	териалов, методики	ствами и характе-		
гических процессов	ния; теорию расчета	лов; не знает расчет-	алов, методики их	их определения.	ристиками материа-		
сельскохозяйственно-	геометрических ха-	ные формулы геомет-	определения; рас-	Знает расчетные	лов; уверенно ис-		
го производства	рактеристик плоских	рических характери-	четные формулы	формулы геометри-	пользует методики		
	поперечных сечений	стик поперечных сече-	геометрических ха-	ческих характери-	их определения;		
	брусьев;	ний брусьев;	рактеристик попе-	стик поперечных	применяет формулы		
			речных сечений	сечений брусьев;	геометрических ха-		
			брусьев;		рактеристик попе-		
	•	**	**		речных сечений;		
	Уметь: определять	Не умеет определять	Частично умеет	Способен: опреде-	Способен само-		
	внутренние силовые	внутренние силовые	определять внут-	лять внутренние	стоятельно:		

	4	4		1	
	факторы при различ-	факторы при различ-	ренние силовые	силовые факторы	определять внут-
	ных видах деформа-	ных видах деформа-	факторы при про-	при сложных видах	ренние силовые
	ций элементов кон-	ций элементов кон-	стых видах дефор-	деформаций эле-	факторы при раз-
	струкций и строить их	струкций и строить их	маций элементов	ментов конструк-	личных (простых и
	эпюры; выбирать ма-	эпюры; нет понятия о	конструкций и	ций и строить их	сложных) видах
	териал деталей в за-	выборе материала де-	строить их эпюры;	эпюры, обоснован-	деформаций эле-
	висимости от харак-	талей в зависимости	неуверенно выбира-	но выбирает мате-	ментов конструк-
	тера нагружения и	от характера нагруже-	ет материал деталей	риал деталей в за-	ций, и строить их
	условий эксплуатации	ния и условий эксплу-	в зависимости от	висимости от ха-	эпюры; выбирать
	машин;	атации машин;	характера нагруже-	рактера нагруже-	материал деталей в
			ния и условий экс-	ния и условий экс-	зависимости от ха-
			плуатации машин;	плуатации машин;	рактера нагруже-
			•	•	ния и условий экс-
					плуатации машин;
Ţ	Владеть: методикой	Не владеет методи-	Частично владеет	Владеет методи-	Свободно владеет
	расчета статически	кой расчета статиче-	методикой расчета	кой расчета стати-	методикой расчета
	определимых и	ски определимых и	статически опреде-	чески определимых	статически опреде-
	неопределимых кон-	неопределимых кон-	лимых и неопреде-	и неопределимых	лимых и неопреде-
	струкций, методами	струкций; не имеет по-	лимых простых кон-	простых конструк-	лимых конструк-
	экспериментального	нятия о методах экс-	струкций; неуверен-	ций; уверенно при-	ций, самостоятельно
	определения напря-	периментального	но применяет мето-	меняет методы экс-	применяет методы
	жений и деформаций	определения напряже-	ды эксперименталь-	периментального	экспериментально-
	в деталях;	ний и деформаций в	ного определения	определения	го определения
	'	деталях;	напряжений и де-	напряжений и де-	напряжений и де-
		, ,	формаций в деталях;	формаций в дета-	формаций в дета-
				лях;	лях;
ļ	ПК 2.3	Не готов к участию в	Частично готов к	Владеет готовно-	Свободно владеет
	Способен участво-	проектировании тех-	участию в проекти-	стью к участию в	готовностью к уча-
	вать в проектирова-	нических средств и	ровании техниче-	проектировании	стию в проектиро-
	нии технических си-	технологических про-	ских средств и тех-	технических	вании технических
	стем обеспечения	цессов производства;	нологических про-	средств и техноло-	средств и техноло-
	технологических про-		цессов производ-	гических процессов	гических процессов
	цессов сельскохозяй-		ства;	производства;	производства;
	ственного производ-		·	, , , ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
I					

ства				
Знать: расчетные	Допускает грубые	Может изложить	<i>Знает</i> расчетные	Свободно знает
формулы напряжений	ошибки в расчетных	основные расчетные	формулы напряже-	расчетные форму-
и деформаций для	формулах напряжений	формулы напряже-	ний и деформаций	лы напряжений и
различных видов де-	и деформаций для	ний и деформаций	для различных ви-	деформаций для
формаций с учетом	различных видов де-	для различных ви-	дов деформаций с	различных видов
вида нагружения эле-	формаций с учетом	дов деформаций с	учетом вида	деформаций с уче-
ментов конструкций	вида нагружения эле-	учетом вида нагру-	нагружения эле-	том вида нагруже-
(условия прочности,	ментов конструкций	жения элементов	ментов конструк-	ния элементов кон-
жесткости и устойчи-	(условия прочности,	конструкций (усло-	ций (условия проч-	струкций (условия
вости); основы назна-	жесткости и устойчи-	вия прочности,	ности, жесткости и	прочности, жестко-
чения допускаемых	вости); не знает осно-	жесткости и устой-	устойчивости);	сти и устойчиво-
напряжений и коэф-	вы назначения допус-	чивости); понятия о	уверенно назначает	сти); основы назна-
фициента запаса	каемых напряжений и	назначении допус-	допускаемые	чения допускаемых
прочности; условия	коэффициента запаса	каемых напряжений	напряжения и ко-	напряжений и ко-
проведения опытных	прочности; не знает	и коэффициента за-	эффициент запаса	эффициента запаса
исследований меха-	условия проведения	паса прочности; по-	прочности; знает	прочности; условия
нических свойств ма-	опытных исследова-	нятие об условиях	условия проведе-	проведения опыт-
териалов;	ний механических	проведения опыт-	ния опытных ис-	ных исследований
	свойств материалов;	ных исследований	следований меха-	механических
		механических	нических свойств	свойств материа-
		свойств материалов;	материалов;	лов;
Уметь: производить	<i>Не умеет</i> произво-	Частично умеет	Способен произво-	Способен само-
расчеты на прочность,	дить расчеты на проч-	производить расче-	дить расчеты на	<i>стоятельно</i> про-
жесткость и устойчи-	ность, жесткость и	ты на прочность,	прочность, жест-	изводить расчеты
вость элементов ма-	устойчивость элемен-	жесткость и устой-	кость и устойчи-	на прочность,
шин и оборудования;	тов машин и оборудо-	чивость элементов	вость элементов	жесткость и устой-
пользоваться норма-	вания; пользоваться	машин и оборудо-	машин и оборудо-	чивость элементов
тивно-технической	нормативно-	вания; пользоваться	вания; пользовать-	машин и оборудо-
документацией;	технической докумен-	нормативно-	ся нормативно-	вания; пользовать-
	тацией;	технической доку-	технической доку-	ся нормативно-
		ментацией;	ментацией;	технической доку-
				ментацией;
Владеть: прикладны-	<i>Не владеет</i> приклад-	Частично владеет	<i>Владеет</i> приклад-	Свободно владеет

ми методами с целью	ными методами с це-	прикладными мето-	ными методами с	прикладными ме-
проведения прове-	лью проведения про-	дами с целью про-	целью проведения	тодами с целью
рочных расчетов,	верочных расчетов,	ведения провероч-	проверочных рас-	проведения прове-
проектных расчетов и	проектных расчетов и	ных расчетов, про-	четов, проектных	рочных расчетов,
определения несущей	определения несущей	ектных расчетов и	расчетов и опреде-	проектных расче-
способности кон-	способности кон-	определения несу-	ления несущей	тов и определения
струкций; способами	струкций; способами	щей способности	способности кон-	несущей способно-
сопоставительного	сопоставительного	конструкций; спо-	струкций; способа-	сти конструкций;
анализа опытных	анализа опытных дан-	собами сопостави-	ми сопоставитель-	способами сопо-
данных.	ных.	тельного анализа	ного анализа опыт-	ставительного ана-
		опытных данных.	ных данных.	лиза опытных дан-
				ных.

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Первый этап (пороговый уровень)

ЗНАТЬ (помнить и понимать): студент помнит, понимает и может продемонстрировать широкий спектр фактических, концептуальных, процедурных знаний.

Текущий контроль

Устный опрос

Модуль 1

- 1. Определение геометрических характеристик сечений брусьев.
- 2. Определение внутренних силовых факторов в сечениях брусьев.
- 3. Выявление видов деформаций посредством метода сечений.
- 4. Результаты статических испытаний металлов на растяжение и разрыв.
- 5. Результаты статических испытаний различных материалов на сжатие.
- 6. Определение марки материала по результатам статических испытаний.
- 7. Определение допускаемых напряжений при растяжении-сжатии, сдвиге-срезе, кручении и прямом изгибе.
- 8. Основные формулы для расчета нормальных и касательных напряжений в сечениях бруса (растяжение-сжатие, сдвиг-срез, кручение, плоский изгиб).
- 9. Условия прочности и жесткости при растяжении-сжатии, сдвиге-срезе, кручении и прямом изгибе.
 - 10. Виды расчетов на прочность и жесткость.
 - 11. Результаты статических испытаний различных материалов на кручение.
- 12. Результаты исследования напряженно-деформированного состояния в тонкостенном вале при чистом сдвиге (кручение).
- 13. Опытная проверка теории чистого плоского изгиба. Распределение нормальных напряжений по сечению балки.
- 14. Опытная проверка теории плоского поперечного изгиба. Распределение касательных и главных нормальных напряжений по сечению балки.
 - 15. Методы расчета на прочность статически определимых конструкций.
 - 16. Суть и содержание способа сравнения деформаций.
- 17. Достоинства и недостатки метода сил. Порядок раскрытия статической неопределимости.
 - Эффективность применения статически неопределимых конструкций.

Модуль 2

- 1. Задачи исследования напряженно-деформированных состояний.
- 2. Виды напряженно-деформированного состояния.
- 3. Применимость теорий прочности.
- 4. Виды сложных деформаций. Примеры из практики.
- 5. Расчет цилиндрических винтовых пружин на сдвиг с кручением.
- Расчет брусьев на одновременное действие изгиба с растяжением-сжатием.
- Основные положения расчета на косой изгиб.
- Расчеты на прочность по теориям прочности при изгибе с кручением.
- 9. Основные положения расчета коленчатого вала.
- 10. Сложные случаи расчета на прочность: тонкостенные и толстостенные сосуды, кривые стержни, контактные напряжения.
 - 11. Понятие потери устойчивости стержня. Критическое состояние.
 - 12. Продольный изгиб стержней в пределах пропорциональности.
 - 13. Продольный изгиб стержней за пределами пропорциональности.

- 14. График критических напряжений.
- 15. Практический (универсальный) способ расчета на устойчивость.
- 16. Продольно-поперечный изгиб стержней и балок.
- 17. Основные положения расчета элементов, движущихся с ускорением.
- 18. Приближенный метод расчета на прочность при ударе.
- 19. Механические свойства материалов при ударе.
- 20. Влияние колебаний на прочность элементов конструкций.
- 21. Режимы работы машин и приводов.
- 22. Явление усталости материала. Характеристики переменных нагрузок.
- 23. Опытное определение предела выносливости.
- 24. Виды циклов переменных нагрузок.
- 25. Основные положения расчета на усталость при симметричном и асимметричном циклах.

Тестирование (примеры)

Банк тестовых заданий для предэкзаменационного тестирования студентов содержит более 150 вопросов и находится на сервере Белгородского ГАУ в электронной информационно-обучающей среде, реализующей возможность дистанционного обучения (http://www.do.bsau.edu.ru/), и доступен по логину и паролю для каждого студента, который определяется номером зачетной книжки.

Основные понятия сопротивления материалов. Метод сечений. Геометрические характеристики сечений

- 1. Сопротивление материалов наука об инженерных методах расчетов на
 - 1) прочность;
 - жесткость;
 - 3) устойчивость;
 - 4) прочность, жесткость и устойчивость.
- 5. Допущениями относительно свойств материала принято, что материал тела является:
 - 1) сплошным, однородным, изотропным, линейно-деформируемым;
 - 2) веществом с атомистической структурой;
 - 3) нелинейно-деформируемым;
 - 4) неоднородным и анизотропным;
- 9. Укажите внутренние силовые факторы, возникающие в поперечном сечении бруса:
 - 1) N_X , T_X , Q_V , Q_Z , M_V , M_Z ;
 - 2) N_z , T_v , Q_x , M_x ;
 - 3) $N_x u N_y, Q_y u Q_y$;
 - 4) M_z и M_z , T_y и Q_z .
- 11. Деформация это деформирование тела под действием приложенных внешних сил, которое проявляется в ... тела:
 - 1) изменении размеров и формы;
 - 2) изменении формы;
 - 3) изменении размеров;
 - 4) Искажении углов.
- 16. Укажите и назовите виды геометрических характеристик, применяемых при расчетах на прочность и жесткость при плоском изгибе.
 - 1) W_y , I_y , W_z , I_z ;
 - 2) W_p, A;
 - 3) I_p, W_p, A,
 - 4) Wy, Wz, Sy,

Центральное растяжение-сжатие. Сдвиг. Кручение. Прямой поперечный изгиб. Расчет статически определимых и статически неопределимых стержневых систем. Элементы рационального проектирования простейших систем

- 22. Укажите механические характеристики пластичных и хрупких материалов, которые принимают в качестве опасных напряжений.
 - 1) $\sigma_{pr}, \sigma_{0.02}, \sigma_r, \tau_{pr};$
 - 2) $\sigma_y, \sigma_{ut}, \sigma_{uc}, \tau_y, \tau_u;$
 - 3) $\sigma_{e}, \sigma_{0.005}, \tau_{e};$
 - 4) σ_{pr} , σ_{e} , τ_{pr} .
- 39. Наиболее распространенным и простым видом расчета на прочность в машиностроении является:
 - 1) расчет по предельным состояниям;
 - 2) вероятностный расчет;
 - 3) расчет по допускаемой нагрузке;
 - 4) расчет по допускаемым напряжениям.
- 41. Основными типами расчетных задач на жесткость при простых видах деформации при статических нагрузках являются:
 - 1) проверка жесткости;
 - 2) проверочный, проектировочный и определение несущей способности;
 - 3) расчет допускаемой нагрузки;
 - 4) определение размеров сечения.
- 44. Какие напряжения являются опасными для элементов конструкции, выполненных из пластичного материала?
 - 1) напряжения, соответствующие пластической деформации;
 - 2) напряжения, соответствующие разрушению;
 - 3) напряжения, соответствующие появлению остаточных деформаций;
 - 4) напряжения, при которых наблюдается прямопропорциональная зависимость между нагрузкой и деформацией.
- 50. В каких конструкциях при наличии погрешностей геометрических размеров элементов возникают монтажные (начальные) напряжения?
 - 1) в механизмах;
 - 2) в статически определимых;
 - 3) в статически неопределимых;
 - во всех перечисленных.

Анализ напряженного и деформированного состояния в точке. Сложное сопротивление. Расчет по теориям прочности. Расчет безмоментных оболочек вращения

- 59. Укажите виды напряженно-деформированного состояния в точке?
 - 1) одноосное (линейное) НДС;
 - 2) двухосное (плоское) НДС;
 - 3) трехосное (объемное) НДС;
 - все вышеуказанные.
- 67. Какие внутренние силовые факторы учитывают при расчете на прочность винтовых цилиндрических пружин?
 - 1) продольная сила и изгибающий момент;
 - 2) изгибающий и крутящий моменты;
 - поперечная сила и крутящий момент;
 - 4) продольная и поперечная сила.
- 74. Какие внутренние силовые факторы возникают в поперечном сечении короткого бруса при внецентренном сжатии?

- 1) поперечная сила и крутящий момент;
- 2) продольная сила и изгибающие моменты;
- 3) крутящий и изгибающий моменты;
- 4) продольная и поперечная силы.
- 79. Какие теории прочности применяют при расчетах на прочность объектов в виде сельско-хозяйственных растений и почвы?
 - 1) І и III теорию прочности;
 - 2) IV и II теории прочности;
 - 3) закон Гука и теорию прочности О.Мора;
 - 4) III и IV теории прочности.
- 80. Какие внутренние силовые факторы возникают в поперечном сечении вала при изгибе с кручением?
 - 1) продольная сила и крутящий момент;
 - 2) изгибающий момент и поперечная сила;
 - 3) продольная и поперечная сила;
 - 4) изгибающий и крутящий моменты.

Устойчивость стержней. Продольный и продольно-поперечный изгиб.

Расчет движущихся с ускорением элементов конструкций.

Удар. Колебания. Усталость. Расчет по несущей способности.

Надежность сельскохозяйственной техники и сопротивление материалов

- 94. Обобщенные данные по расчету сжатых стержней на устойчивость с применением формул Эйлера и Ясинского приведены на
 - 1) диаграмме предельных напряжений;
 - 2) графике критических напряжений;
 - 3) диаграмме циклов нагружения;
 - 4) графике предельных амплитуд.
- 99. Коэффициент динамичности показывает
 - 1) во сколько раз динамические напряжения превышают статические;
 - на сколько динамические напряжения меньше статических;
 - 3) на сколько динамические напряжения больше статических;
 - 4) во сколько раз динамические напряжения меньше статических.
- 119. Если машина работает в неустановившемся режиме, то для ее нормальной работы рекомендуется ... зона.
 - 1) дорезонансная;
 - 2) околорезонансная;
 - зарезонансная;
 - 4) резонансная.
- 122. В сечении детали, где происходит усталостное разрушение, можно ясно различить ... зо-
 - три;
 - 2) одну;
 - четыре;
 - 4) две.
- 126. Резкие изменения формы детали, отверстия, выточки, надрезы и т.д. значительно снижают предел выносливости по сравнению с пределом выносливости для гладких цилиндрических образцов. Это явление называется
 - 1) масштабным фактором;
 - 2) влияние качества поверхности;
 - 3) коэффициентом концентрации детали;
 - 4) концентрация напряжений.
- 135. При расчете на усталостную прочность при сложном нагружении необходимо вычислять

следующие коэффициенты запаса:

- 1) n_σ, n_τ, n;
- 2) n_o, n,
- 3) n_t, n;
- $4)\quad n_{\tau},\,n_{\sigma}.$

Ситуационные задачи

Модуль 1

тидуль 1				
Задача № 1	Задача № 2			
Прямолинейная балка прогнулась под действием заданной нагрузки. После снятия нагрузки прямолинейность полностью не восстановилась. Прочная ли эта балка?				
Задача № 3	Задача № 4			
Нормальная работа червячной передачи была нарушена из-за возникновения слишком больших упругих перемещений червячного вала под червячным колесом. Что послужило причиной нарушения работы?	Из квадрата с длиной стороны <i>а</i> вырезана четвертая часть. Чему равны координаты центра тяжести оставшейся части сечения?			
Задача № 5	Задача № 6			
Задача № 5 Вычислить момент инерции стандартно- го двутаврового профиля относительно ос- нования.	Задача № 6 Вычислить момент инерции прямоугольника с длиной сторон b и h относительно его диагонали.			
Вычислить момент инерции стандартного двутаврового профиля относительно ос-	Вычислить момент инерции прямоугольника с длиной сторон b и h относительно его			
Вычислить момент инерции стандартно- го двутаврового профиля относительно ос- нования.	Вычислить момент инерции прямоугольника с длиной сторон b и h относительно его диагонали.			
Вычислить момент инерции стандартного двутаврового профиля относительно основания. Задача № 7 Какие внутренние сило-вые факторы возникают в сечениях поршневого пальца,	Вычислить момент инерции прямоугольника с длиной сторон b и h относительно его диагонали. Задача № 8 Какие внутренние силовые факторы возникают в сечениях коленчатого и распредели-			

Модуль 2

Задача № 1	Задача № 2		
Приведите схематическое изображение	Приведите примеры деталей, испытываю-		
линейного, плоского и объемного напряжен-	щих следующие напряженно-		
но-деформированных состояний растяжения,	деформированные состояния: одноосное,		
сжатия и смешанных знаков.	двухосное и трехосное растяжение.		
Задача № 3	Задача № 4		
Приведите примеры деталей, испыты-	Для цилиндрической винтовой пружины		
вающих следующие напряженно-	растяжения-сжатия необходимо сравнить зна-		
деформированные состояния: одноосное,	чения суммарных касательных напряжений в		
двухосное и трехосное сжатие.	крайних точках сечения проволоки.		
Задача № 5	Задача № 6		
Во сколько раз допускаемая растягива-	Какой вид деформации возможен сложный		
ющая сила, возникающая от затяжки болта с	и/или косой изгиб для брусьев, у которых все		
резьбой в случае с центральной головкой	оси сечения являются главными (круг, квадрат,		
больше, чем для варианта головки с эксцен-	равносторонний треугольник)? Приведите ана-		

триситетом.	литические соображения.
Задача № 7	Задача № 8
Как найти наиболее опасное сечение по	Стальной болт с метрической резьбой под-
максимальным внутренним усилиям для	вержен действию растягивающей силы F и
бруса, испытывающего внецентренное рас-	скручивающего момента Т. Проверить проч-
тяжение-сжатие?	ность, если допускаемое напряжение и рас-
	четный диаметр болта d_o известны.
Задача № 9	Задача № 10
По какой теории прочности, третьей или	Можно ли при расчете валов прямоугольно-
четвертой, получается больший диаметр ва-	го сечения на изгиб с кручением применять
ла при расчете на изгиб с кручением, если	выражение эквивалентного изгибающего мо-
$M_y=M_z=T_x$?	мента? Ответ подтвердить формулами.

Промежуточный контроль

Экзамен

- 1. Основные понятия: определение и задачи курса; связь с общенаучными, общетехническими и специальными дисциплинами.
- 2. История развития науки о сопротивлении материалов, вклад российских и советских ученых. Гипотезы теории сопротивления материалов.
 - 3. Реальный объект и расчетная схема. Внешние и внутренние силы.
- 4. Напряжения и деформации. Зависимость между напряжениями и упругими деформациями. Общий план расчета на прочность.
- 5. Метод сечений: внутренние силовые факторы, виды нагружения и деформаций, построение эпюр внутренних усилий (правило РОЗУ).
- 6. Геометрически характеристики сечений: виды геометрических характеристик; формулы преобразования моментов инерции.
- 7. Главные оси и моменты инерции; геометрические характеристики простых, сложных и составных сечений; понятие о прокатных профилях.
- 8. Центральное растяжение: экспериментальное изучение механических свойств материалов при статических испытаниях; выбор допускаемых напряжений.
- 9. Центральное сжатие: экспериментальное изучение механических свойств материалов при статических испытаниях; выбор допускаемых напряжений.
- 10. Кручение: экспериментальное изучение механических свойств материалов при статических испытаниях; выбор допускаемых напряжений.
- 11. Центральное растяжение-сжатие: дифференциальные зависимости между интенсивностью распределенной нагрузки и внутренними силовыми факторами; определение нормальных и касательных напряжений.
- 12. Сдвиг. Кручение: дифференциальные зависимости между интенсивностью распределенной нагрузки и внутренними силовыми факторами; определение касательных напряжений.
 - 13. Условные расчеты на разрыв, срез и смятие.
- 14. Прямой поперечный изгиб: выбор допускаемых напряжений; дифференциальные зависимости между интенсивностью распределенной нагрузки и внутренними силовыми факторами; определение нормальных и касательных напряжений.
- 15. Методы расчета на прочность статически определимых систем. Типы прочностных задач при растяжении-сжатии, сдвиге, кручении.
 - 16. Типы прочностных задач при прямом поперечном изгибе.
 - 17. Типы задач на использование условия жесткости.
- 18. Расчеты на прочность элементов конструкций из пластичных и хрупких материалов.

- 19. Расчет статически неопределимых стержневых систем: основные понятия; отличительные особенности статически неопределимых стержневых систем.
- 20. Разновидности статически неопределимых стержневых систем и их решение способом сравнения деформаций.

Второй этап (продвинутый уровень)

УМЕТЬ (применять, анализировать, оценивать, синтезировать): уметь использовать изученный материал в конкретных условиях и в новых ситуациях; осуществлять декомпозицию объекта на отдельные элементы и описывать то, как они соотносятся с целым, выявлять структуру объекта изучения; оценивать значение того или иного материала — научнотехнической информации, исследовательских данных и т.д.; комбинировать элементы так, чтобы получить целое, обладающее новизной.

Текущий контроль

Устный опрос

- 1. Визуальное определение видов деформации по изменения формы объекта.
- 2. Определение условных механических характеристик металлов (предела пропорциональности, предела упругости и предела текучести) при испытаниях на растяжение.
- 3. Определение постоянных величин материалов: модуля продольной упругости, коэффициента Пуассона, модуля сдвига.
- 4. Условная диаграмма и истинная диаграмма растяжения образца из малоуглеродистой стали.
- 5. Определение механических характеристик прочности металла при испытании на разрыв.
- 6. Определение механических характеристик пластичности и вязкости металла при испытании на разрыв.
- 7. Порядок ориентировочного определения марки материала образца и применение результатов определения механических характеристик материала.
- 8. Определение величин механических характеристик различных материалов при испытании на сжатие.
- 9. Определение механических характеристик различных материалов при испытаниях на кручение.
- 10. Опытное исследование напряженного и деформированного состояния чистого сдвига в стержне кольцевого сечения при кручении.
- 11. Построение эпюр распределения нормальных и касательных напряжений по сечению двутавровой балки.
- 12. Построение эпюр распределения главных нормальных напряжений по сечению двутавровой балки.
- 13. Виды опасных точек в поперечном сечении балки при плоском поперечном изгибе. Характеристика напряженного состояния в этих точках.
- 14. Экспериментальное определение параметров деформации балки при плоском изгибе.
- 15. Порядок опытного построения изогнутой оси балки при плоском поперечном изгибе.
- 16. Опытное определение величины опорной реакции статически неопределимой балки.
- 17. Определение жесткости и построение силовой характеристики цилиндрической винтовой пружины.
- 18. Опытное определение суммарных напряжений, полной деформации и положения нулевой линии в опасном сечении бруса при косом изгибе.

- Определение главных напряжений методом электротензометрии при изгибе с кручением.
- 20. Определение критических нагрузок при продольном изгибе стержня большой гибкости.
 - 21. Определение механических характеристик материалов при ударных испытаниях.
 - 22. Опытное определение предела выносливости металлов.
- 23. Усталостные испытания узлов сельскохозяйственной техники на примере карданных шарниров.
 - Устройство тензорезисторов, схема электротензометра и принцип действия. 24.
- Испытательные машины (МР-100, Р-5, КМ-50-1, УКИ-10М, 2121КМ-0.05, стенд СМУ, и другие средства испытаний).
- 26. Измерительные приборы, используемые при выполнении лабораторных работ (штангенциркуль, индикатор часового типа, механический тензометр). Назначение и порядок применения.

Тестирование (примеры)

Основные понятия сопротивления материалов. Метод сечений. Геометрические характеристики сечений

- 2. Основными задачами курса "Сопротивление материалов" являются
 - 1) проверочные расчеты;
 - 2) проектировочные расчеты;
 - 3) определение допускаемой нагрузки;
 - все указанные.
- 13. Укажите правильный порядок действий при определении внутренних силовых факторов по методу сечений.
 - 1) уравновешиваем, отбрасываем, рассекаем, заменяем;
 - 2) рассекаем, заменяем, отбрасываем, уравновешиваем;
 - 3) рассекаем, отбрасываем, заменяем, уравновешиваем;
 - 4) заменяем, уравновешиваем, рассекаем, отбрасываем.
- 15. Эпюра внутренних усилий это ... зависимости внутреннего усилия от координаты X, направленной вдоль продольного размера бруса.
 - 1) аналитическое выражение;
 - 2) графо-аналитическое выражение;
 - 3) математическое выражение;
 - графическое изображение.
- 18. По какой формуле определяется осевой момент инерции сечения относительно оси У, параллельной оси V_{c} если расстояние между осями равно a?
 - 1) $S_y=A Z_c$;

$$A = \sum_{i=1}^{n} A_i;$$

3)
$$I_y = I_{yc} + A \cdot a^2$$
;
4) $I_{yc} = \int_A Z^2 \cdot dA$.

19. Какую формулу применяют для определения осевого момента инерции сечения относительно оси Z, расположенной под углом α к центральной оси Z_c?

1)
$$W_z = \frac{I_z}{y_{max}};$$

2) $I_z = \sum_{i=1}^n I_z^{(i)};$

2)
$$I_Z = \sum_{i=1}^n I_Z^{(i)};$$

$$I_p = \int_{A} \rho^2 dA$$

4) $I_{z\alpha} = I_{ze} \cdot \cos 2\alpha + I_{ve} \cdot \sin^2 \alpha + I_{veze} \cdot \sin 2\alpha$.

Центральное растяжение-сжатие. Сдвиг. Кручение. Прямой поперечный изгиб. Расчет статически определимых и статически неопределимых стержневых систем.

Элементы рационального проектирования простейших систем

- 25. Чему равны нормальные и касательные напряжения в поперечном сечении стержня при растяжении-сжатии?
 - 1) $\sigma_{\alpha}=0, \tau_{\alpha}=0$;

2)
$$\sigma_{\text{max}} = \frac{F}{A}; \tau = 0$$

3)
$$\sigma_{\alpha} = \sigma \cdot \cos^2 \alpha, \tau_{\alpha} = \frac{\sigma}{2} \cdot \sin 2\alpha;$$

4)
$$\sigma_{\alpha} = \frac{\sigma}{2}, \tau_{\alpha} = \frac{\sigma}{2}$$
.

- 29. Укажите зависимости, выражающие закон Гука при растяжении-сжатии и сдвиге.
 - 1) $\sigma = \mathbf{E} \cdot \mathbf{\epsilon}, \ \tau = \mathbf{G} \cdot \mathbf{y};$

$$\epsilon = \frac{\Delta l}{l_o}, \gamma = \frac{\Delta S}{h};$$

3)
$$\frac{dZ}{dx} = \Theta, \frac{1}{\rho} = \frac{M_y}{E \cdot I_y};$$

4)
$$\tau = \frac{T}{W_n}, \sigma = \frac{N_x}{A}.$$

- 40. Основными типами прочностных задач при статическом расчете по допускаемым напряжениям при простых видах деформации (растяжение-сжатие, сдвиг, кручение, прямой изгиб) являются:
 - 1) проверочный, проектировочный и определение допускаемой нагрузки;
 - 2) определение размеров сечения;
 - 3) проверка прочности;
 - 4) определение несущей способности.
- 49. В каких конструкциях в процессе изменения температуры возникают температурные напряжения?
 - 1) в статически определимых;
 - 2) в статически неопределимых;
 - 3) в механизмах;
 - 4) во всех перечисленных.
- 54. Какова эффективность корректного введения статической неопределимости в машиностроительные конструкции?
 - 1) увеличение значений внутренних усилий;
 - 2) значения внутренних усилий не изменяются;
 - 3) снижение нагруженности конструкций;
 - 4) повышение веса конструкции.

Анализ напряженного и деформированного состояния в точке. Сложное сопротивление. Расчет по теориям прочности.

Расчет безмоментных оболочек вращения

- 61. Какие величины связывает обобщенный закон Гука?
 - 1) главные деформации и главные напряжения;
 - 2) главные деформации и механические характеристики материала;
 - 3) главные напряжения и механические характеристики материала;
 - 4) механические характеристики материала.
- 66. По какому правилу определяют результирующие напряжения в случае, если в поперечном сечении бруса возникают напряжения разного вида, действующие во взаимно перпендикулярных плоскостях?
 - 1) геометрическим сложением;
 - 2) по теориям прочности;
 - алгебраическим сложением;
 - 4) геометрическим и алгебраическим сложением.
- 77. Какие теории прочности используют при расчетах на прочность деталей, изготовленных из пластичных материалов?
 - 1) III и IV теории прочности;
 - теорию О.Мора;
 - 3) І теорию прочности;
 - II теорию прочности.
- 84. Укажите участки коленчатого вала, которые испытывают одновременное действие изгиба с кручением.
 - 1) коренная шейка;
 - только "щека";
 - 3) только шатунная шейка;
 - шатунная шейка и «щека».

Устойчивость стержней. Продольный и продольно-поперечный изгиб.

Расчет движущихся с ускорением элементов конструкций.

Удар. Колебания. Усталость. Расчет по несущей способности.

Надежность сельскохозяйственной техники и сопротивление материалов

- 95. Практический способ расчета на устойчивость основан на прочностном расчете на сжатие с применением коэффициента
 - 1) занижения основного допускаемого напряжения;
 - ассиметрии цикла нагрузок;
 - 3) Пуассона;
 - 4) влияния температуры.
- 107. По какой формуле вычисляют коэффициент динамичности при ударе?

$$\kappa_{\rm d} = \sqrt{\frac{2h}{\delta_{\rm st}}};$$

$$\kappa_{\rm d} = 1 + \frac{a}{g};$$

2)
$$\kappa_{d} = 1 + \frac{a}{g};$$
3)
$$\kappa_{d} = 1 + \frac{\delta_{st}^{F}}{\delta_{st}^{Q}} \cdot \beta;$$

4)
$$\kappa_d = \frac{\sigma_d}{\sigma_{st}}$$
.

- 117. При ∞≈∞, отношение 0,7≤∞/∞,≤1,3. В этом случае режим работы машин и конструкций называется
 - 1) дорезонансный;

- 2) околорезонансный;
- 3) зарезонансный;
- 4) резонансный.
- 121. Накопление необратимых механических изменений в материале при приложении переменных нагрузок называют
 - 1) прочностью;
 - 2) жесткостью;
 - 3) усталостью;
 - 4) выносливостью.
- 139. Основным критерием рациональности конструкции при равных прочих условиях является
 - 1) максимум массы;
 - 2) минимум стоимости;
 - 3) максимум стоимости;
 - 4) минимум массы.

Ситуационные задачи

Модуль 1			
Задача № 11	Задача № 12		
Построить эпюры поперечных сил и из-	Построить эпюры внутренних силовых фак-		
гибающих моментов для балки при прямом	торов для бруса, испытывающего сложную		
изгибе.	деформацию.		
Задача № 13	Задача № 14		
При испытании на растяжение стального	По диаграммам растяжения определить, ка-		
образца с размерами d_{θ} и l_{θ} получены: сила	кой из материалов имеет большую жесткость,		
разрушения и длина после разрыва. Какие	какой - большую прочность, а какой – боль-		
характеристики можно определить?	шую пластичность?		
Задача № 15	Задача № 16		
Временное сопротивление растяжению	Стальной стержень круглого поперечного		
равно (неравно) временному сопротивле-	сечения с размерами <i>d</i> и <i>l</i> нагружается про-		
нию при сжатии. Укажите, какой это мате-	дольной растягивающей силой F. Вычислить		
риал: хрупкий или пластичный?	напряжение в поперечном сечении и деформа-		
	цию вдоль оси стержня.		
Задача № 17	Задача № 18		
На короткую стальную трубу действует	Стальной канат, состоящий из k прядей по n		
сжимающая сила F . Коэффициент запаса	проволок в каждой, предназначен для подъема		
прочности задан. Найти наименьший допус-	груза массой т. Определить напряжение в канате		
каемый внешний диаметр трубы, если тол-	и коэффициент запаса прочности, если d диаметр		
щина ее стенки составляет 0,1 внешнего диа-	и временное сопротивление проволок σ_u .		
метра.			
Задача № 19	Задача № 20		
Зубчатый венец шестерни бортовой пе-	Определить напряжения среза в предохра-		
реда-чи трактора прикрепляется к ступице и	нительном пальце при его разрушении, если		
болтами диаметром d , расположе-нными по	размыкающее усилие F_p , а диаметр пальца d . К		
окружности радиуса R . Найти напряжения в	какой механической характеристике близко		
болтах, если передаваемый момент T .	полученное значение.		

IVIO	ιул	lЬ	4

Задача № 11	Задача № 12		
Чугунный шкив диаметром D и весом G	Какие напряжения возникают в контакте		
установлен на чугунном двухопорном валу	колеса механизма передвижения мостового		

диаметром d и длиной l. Проверить прочность вала, если усилия в ветвях горизонтальной ременной передачи T=2t и t. Допускаемые напряжения известны.

крана и рельса с плоской головкой. Материал колеса и рельса сталь. Какую форму имеет площадка контакта?

Задача № 13

Приведите примеры деталей машин, для которых проводят расчет на основе теории плоских брусьев большой кривизны.

Задача № 14

Какой геометрический объект положен в основу теории расчета на прочность цилиндра ДВС и корпуса гидроцилиндра, в которых толщина стенки существенно меньше характерного размера?

Задача № 15

К какому объекту расчета можно отнести задачу определения напряжений в деталях соединения, получаемого напрессовкой стальной втулки на стальной вал в условии, что внутренний диаметр втулки несколько меньше наружного диаметра вала?

Задача № 16

В плоскости качания шатуна ДВС один конец совершает вращательное движение, а другой - поступательное. Нормальное ускорение в первой точке имеет максимум, а во второй равно нулю. В этом случае силы инерции распределены по закону треугольника и перпендикулярны к оси шатуна. Определить величину и положение равнодействующей сил инерции.

Задача № 17

Стальная проволока диаметром d и длиной l с грузом массой m на конце равномерно вращается вокруг вертикальной оси. Определить частоту вращения ω , при которой произойдет разрушение проволоки, если временное сопротивление материала проволоки задано.

Задача № 18

Груз весом Q с помощью подъемного механизма опускается с постоянной скоростью V. При внезапном торможении подъемного механизма груз мгновенно останавливается. В момент остановки длина троса между грузом и барабаном подъемного механизма I. Площадь сечения троса A, модуль упругости материала E. Определить наибольшее напряжение в тросе. Весом троса пренебречь.

Задача № 19

Определите предельную гибкость для применения формул Эйлера и Ясинского при расчете сжатых стержней из следующих материалов: сталь Ст.3, сталь 20, сталь 40X, серый чугун СЧ-21-40, дюралюмин Д16Т, стеклопласт, дерево – сосна.

Задача № 20

Проверить устойчивость полой стальной штанги ГРМ ДВС длиной l, если наружный диаметр d_{H} , а внутренний - d_{e} . Нагрузка на штангу F. Рекомендуемый коэффициент запаса устойчивости задан.

Промежуточная аттестация

Экзамен

- 1. Метод сил: решение канонических уравнений метода сил; статическая и деформационная проверки; эффект введения статической неопределимости.
- 2. Элементы рационального проектирования простейших систем: основные понятия; стержни, валы и балки равного сопротивления.
- 3. Элементы рационального проектирования простейших систем: расчет простейших систем с минимальным расходом материала.
- 4. Анализ напряженного и деформированного состояния в точке: понятие напряженного и деформированного состояния; задачи и виды напряженного и деформированного состояния.
- 5. Обобщенный закон Гука и его выражение для различных видов напряженного состояния.
 - 6. Потенциальная энергия. Линейное, плоское и объемное состояния.

- 7. Экспериментальные методы исследования напряженного и деформированного состояния.
- 8. Сложное сопротивление: понятие сложной деформации; порядок определения суммарных напряжений.
- 9. Сдвиг и кручение. Расчет на прочность цилиндрических винтовых пружин с малым шагом.
 - 10. Изгиб с растяжением-сжатием. Расчет на прочность.
 - 11. Косой изгиб. Расчет на прочность и жесткость.
 - 12. Внецентренное растяжение-сжатие. Расчет на прочность.
 - 13. Расчет по теориям прочности: классические теории прочности.
- 14. Расчет по теориям прочности: обобщенная теория прочности Мора; применимость различных теорий прочности.
 - 15. Изгиб с кручением вала круглого сечения.
 - 16. Изгиб с кручением вала некруглого сечения.
 - 17. Расчет коленчатого вала.
 - 18. Расчет на прочность оболочек: сферический и цилиндрический сосуды.
- 19. Устойчивость стержней. Продольный изгиб: основные понятия; расчет по формулам Эйлера и Ясинского.
 - 20. График критических напряжений и его применение к расчету на прочность.

Третий этап (высокий уровень)

ВЛАДЕТЬ наиболее общими, универсальными методами действий, познавательными, творческими, социально-личностными навыками.

Текущий контроль

Устный опрос

Модуль 1

- 1. В чем заключается вклад российских ученых в сопротивление материалов?
- 2. Каковы основные даты истории развития науки о сопротивлении материалов?
- 3. Приведите примеры стандартных прокатных профилей.
- 4. Запишите формулы для вычисления площадей простых фигур (прямоугольник, треугольник, квадрат, круг, кольцо и др.).
- 5. Запишите формулы для вычисления осевых и полярных моментов инерции простых фигур (прямоугольник, треугольник, квадрат, круг, кольцо и др.).
- 6. Опишите механические свойства неметаллических материалов, применяемых в сельскохозяйственном машиностроении.
 - 7. Опишите механические свойства почвы и сельскохозяйственных растений.
- 8. Приведите особенности расчета на прочность балок из пластичного и хрупкого материалов. Запишите условия прочности.
- 9. Какова взаимосвязь нормальных и касательных напряжений с линейными и угловыми деформациями?
- 10. Дайте толкование геометрического смысла параметров деформаций стержней, валов и балок. Изобразите графически.
- 11. Чем отличается точное дифференциальное уравнение упругой линии балки от приближенного?
 - 12. Какие Вы знаете типы расчетов на прочность?
 - 13. Какие Вы знаете типы расчетов на жесткость?
 - 14. Приведите разновидности статически неопределимых систем.
- 15. В чем заключаются отличительные признаки статически неопределимых конструкций по сравнению со статически определимыми?
 - 16. Дайте определения брусьям равного сопротивления.

Модуль 2

- 1. Дайте определение понятию сложная деформация?
- 2. В каком случае в поперечном сечении бруса возникнут все внутренние силовые факторы?
 - 3. Укажите опасные сечения в конструкции коленчатого вала.
 - 4. Приведите направления развития теорий предельных напряженных состояний.
- 5. Приведите примеры линейного, плоского и объемного напряженнодеформированных состояний растяжения и сжатия.
- 6. Объясните применимость классических теорий прочности и теории прочности О.Мора в сельскохозяйственных технологических процессах.
 - Применимость графика критических напряжений к расчетам на устойчивость.
- 8. Сопоставьте сложность классического и практического методов расчета на устойчивость сжатых стержней.
 - 9. Как определить вид расчета при продольно-поперечном изгибе?
 - 10. В чем заключается физический смысл коэффициента динамичности?
 - 11. Приведите классификацию колебательных процессов.
- 12. Каковы основные требования при проектировании машин с точки зрения влияния колебаний?
- 13. Назовите дополнительные факторы, оказывающие влияние на величину предела выносливости.
 - 14. Приведите примеры тонкостенных оболочек вращения.
 - 15. В чем заключается эффективность расчетов по предельным нагрузкам?
- 16. Каковы основные направления экономии материалов и повышения прочностной надежности элементов конструкций и машин?

Тестирование (примеры)

Основные понятия сопротивления материалов. Метод сечений. Геометрические характеристики сечений

- 8. Расчетная схема это условное изображение реального объекта с учетом факторов, влияющих на его прочность, жесткость и устойчивость, к которым относятся:
 - 1) нагрузка;
 - 2) геометрические характеристики;
 - 3) материал и его механические свойства;
 - 4) все перечисленные факторы
- 13. Укажите правильный порядок действий при определении внутренних силовых факторов по методу сечений.
 - 1) уравновешиваем, отбрасываем, рассекаем, заменяем;
 - 2) рассекаем, заменяем, отбрасываем, уравновешиваем;
 - 3) рассекаем, отбрасываем, заменяем, уравновешиваем;
 - 4) заменяем, уравновешиваем, рассекаем, отбрасываем.
- 14. Укажите и назовите сложную деформацию, вызванную следующими внутренними усилиями:
 - 1) $Q_z + M_v$;
 - 2) $Q_v + M_z$,
 - 3) $T_x + Q_z + M_v$;
 - 4) N_x.
- 19. Какую формулу применяют для определения осевого момента инерции сечения относительно оси Z_c ?

1)
$$W_z = \frac{I_z}{Y_{max}}$$
;

2)
$$I_Z = \sum_{i=1}^n I_Z^{(i)};$$

$$I_p = \int_A \rho^2 dA \quad ;$$

- 4) $I_{z\alpha} = I_{zc} \cdot \cos 2\alpha + I_{yc} \cdot \sin^2 \alpha + I_{yczc} \cdot \sin 2\alpha$.
- 20. Укажите формулы расчета центральных осевых моментов инерции прямоугольного сечения.

1)
$$I_{y_c} = \frac{b \cdot h^3}{12}, I_{z_c} = \frac{h \cdot b^3}{12};$$

2)
$$I_{y_c} = I_{z_c} = \frac{a^4}{12};$$

3)
$$I_{y_c} = I_{Z_c} = \frac{\pi d^4}{64};$$

4)
$$I_{y_c} = \frac{b \cdot h^3}{12}, I_{z_c} = \frac{h \cdot b^3}{36}.$$

Центральное растяжение-сжатие. Сдвиг. Кручение. Прямой поперечный изгиб. Расчет статически определимых и статически неопределимых стержневых систем.

Элементы рационального проектирования простейших систем

- 23. Какие факторы учитывает допускаемый коэффициент запаса прочности?
 - 1) вид материала (пластичный или хрупкий);
 - 2) вид деформации рассчитываемого элемента;
 - точность определения нагрузок, чувствительность материалов к обработке, ответственность конструкции;
 - 4) вид нагрузок (статическая или динамическая).
- 31. При условных расчетах на срез соединительных элементов сварных и заклепочных соединений применяют следующие формулы:

$$\sigma = E \cdot \varepsilon, \sigma = \frac{N_x}{A};$$

2)
$$\tau_{cp} = \frac{Q}{A}; \tau = \frac{Q \cdot S}{b \cdot I_v};$$

3)
$$\tau = G \cdot \gamma, \tau = \frac{T}{I_p} \cdot \rho;$$

4)
$$\tau = \frac{F}{0.7 \cdot \delta \cdot l_{mb}}, \tau = \frac{Q}{\frac{\pi d^2}{A} \cdot m \cdot n}.$$

36. Для расчета нормальных напряжений при прямом поперечном изгибе применяют формулу Навье:

1)
$$\sigma = \frac{M_y}{I_y} \cdot Z;$$

2)
$$\sigma = \frac{W_x}{A}$$
;

3)
$$\sigma = \frac{F}{n \cdot d \cdot \delta}$$
;

4)
$$\tau = \frac{Q}{A}$$
;

37. Для расчета касательных напряжений при прямом поперечном изгибе применяют формулу Журавского:

1)
$$\sigma = \frac{M_y}{I_v} \cdot Z;$$

$$\tau = \frac{Q \cdot S_y}{\mathbf{B} \cdot I_y};$$

$$\tau = \frac{T_x}{I_p} \cdot \rho;$$

$$\tau = \frac{Q}{A_{cp}}$$

- 45. Статически неопределимыми конструкциями называют конструкции, для расчета которых ... уравнений статики:
 - 1) возможно применение;
 - 2) недостаточно применения;
 - 3) обязательно применение;
 - 4) достаточно применение.
- 54. Какова эффективность корректного введения статической неопределимости в машиностроительные конструкции?
 - 1) увеличение значений внутренних усилий;
 - 2) значения внутренних усилий не изменяются;
 - 3) снижение нагруженности конструкций;
 - 4) повышение веса конструкции.

Анализ напряженного и деформированного состояния в точке. Сложное сопротивление. Расчет по теориям прочности. Расчет безмоментных оболочек вращения

- 61. Какие величины связывает обобщенный закон Гука?
 - 1) главные деформации и главные напряжения;
 - 2) главные деформации и механические характеристики материала;
 - 3) главные напряжения и механические характеристики материала;
 - 4) механические характеристики материала.
- 67. Какие внутренние силовые факторы учитывают при расчете на прочность винтовых цилиндрических пружин?
 - 1) продольная сила и изгибающий момент;
 - 2) изгибающий и крутящий моменты;
 - 3) поперечная сила и крутящий момент;
 - 4) продольная и поперечная сила.
- 79. Какие теории прочности применяют при расчетах на прочность объектов в виде сельско-хозяйственных растений и почвы?
 - 1) І и ІІІ теорию прочности;

- 2) IV и II теории прочности;
- 3) закон Гука и теорию прочности О.Мора;
- 4) III и IV теории прочности.
- 84. Укажите участки коленчатого вала, которые испытывают одновременное действие изгиба с кручением.
 - 1) коренная шейка;
 - 2) только "щека";
 - 3) только шатунная шейка;
 - 4) шатунная шейка и «щека».
- 86. Какой из элементов двигателя внутреннего сгорания можно отнести к тонкостенным сосудам?
 - 1) коленчатый вал;
 - рабочая камера сгорания;
 - 3) шатун;
 - 4) поршневой палец.

Устойчивость стержней. Продольный и продольно-поперечный изгиб.

Расчет движущихся с ускорением элементов конструкций.

Удар. Колебания. Усталость. Расчет по несущей способности.

Надежность сельскохозяйственной техники и сопротивление материалов

- 105. По какой формуле определяют напряжения при динамических нагрузках?
 - $\sigma_{\rm st} = \frac{M_{\rm max}}{W_{\rm v}};$
 - 2) $\sigma_{\rm st} = \frac{N}{A}$;
 - 3) $\sigma_d = \kappa_d \cdot \sigma_{st}$;
 - 4) $\sigma_d = \sigma_{st} / \kappa_d$.
- 118. В случае $\omega >> \omega_o$, отношение ω/ω_o стремится к бесконечности. Такой режим работы машин и конструкций называют . . .
 - 1) дорезонансный;
 - 2) околорезонансный;
 - 3) зарезонансный;
 - 4) резонансный.
- 139. Основным критерием рациональности конструкции при равных прочих условиях является
 - 1) максимум массы;
 - 2) минимум стоимости;
 - 3) максимум стоимости;
 - 4) минимум массы.
- 145. При расчетах на устойчивость сжатых стержней рациональные сечения имеют
 - 1) форму сплошных сечений;
 - 2) полую форму;
 - 3) двутавровую форму;
 - 4) составную профильную форму.
- 148. Какие факторы в течение всего жизненного цикла конструкции влияют на ее прочностную надежность?
 - 1) конструктивные;
 - 2) технологические;
 - 3) эксплуатационные;
 - 4) все указанные.

Ситуационные задачи

Задача № 21

частот вынужденных и собственных коле-

баний ω/ω_{o} укажите зоны работы механиче-

ских приводов на основе ДВС и электродви-

Задача № 25

Из бревна размером D вырезан брус пря-

гателей. Укажите меры с резонансом.

Модуль 1

Задача № 22

скоростями вращения вала n_1 и n_2 . Двигатель

создает периодическую внешнюю силу F.

Обосновать выбор благоприятного режима

Задача № 26

Сравнить расходы материала на один метр

эадача № 21	эадача л⊻ 22	
Определить величину силы F , требуемую для продавливания круглого отверстия d в стальной полосе с помощью пуансона, если предел прочности на срез материала полосы задан.	Муфта соединяет две части вала диаметром d и передает момент T . Проверить прочность тела муфты, если внешний диаметр D , допускаемый коэффициент запаса задан. Ослаблением тела муфты шпоночным пазом пренебречь.	
Задача № 23	Задача № 24	
Определить длину стального вала диа-	В результате погрешности монтажа ось	
метром d , если максимальное касательное	среднего подшипника трехопорного вала ока-	
напряжение при угле закручивания $\boldsymbol{\Theta}$ со-	залась выше осей крайних опор на 1. Опреде-	
ставляет $ au_{max}$.	лить реакции опор и напряжения в сечении	
	вала d .	
Задача № 25	Задача № 26	
В процессе резания дисковой фрезой	Проверить прочность чугунной консоли,	
окружная сила, приходящаяся на один зуб	нагруженной двумя противоположно-	
равна F . Определить ширину зуба b в сече-	направленными силами F ₁ и F ₂ , приложенны-	
нии на расстоянии І от конца зуба, если вы-	ми в концевом и среднем сечении. Допускае-	
сота сечения h и допускаемые напряжения	мое напряжение при растяжении и сжатии из-	
известны. Чему равен прогиб конца зуба. вестно.		
Задача № 27	Задача № 28	
Сварная двухопорная балка двутаврово-	Какую форму поперечного сечения следует	
го сечения нагружена в среднем сечении	принимать для стальных (чугунных) балок при	
сосредоточенной силой. Установить, какая	расчетах на прочность при плоском попереч-	
из двух точек поперечного сечения верхней	ном изгибе?	
полки (верхняя или нижняя) более опасна?		
Проверить прочность.	2 22 20	
Задача № 29	Задача № 30	
Определить диаметр вала, передающего		
мощность N при угловой скорости ω , если	· · · · · · · · · · · · · · · · · · ·	
допускаемое напряжение задано.	лое) кручение, с учетом расхода материала?	
	дуль 2	
Задача № 21	Задача № 22	
Проверить размеры сечения шатуна	Груз массой <i>т</i> падает на консольную бал-	
тракторного ДВС, если в плоскости качания	ку двутаврового сечения длиной <i>I</i> с высоты <i>h</i> .	
шатун испытывает поперечный изгиб от сил инерции и продольный изгиб от сжимаю-	Сопоставить коэффициент динамичности в следующих случаях: 1) при ударе на свобод-	
щей силы. Закрепление концов шарнирное,	ном конце; 2) при ударе в середине балки.	
сечение – двугавровое.	Жесткость балки постоянна, модуль упруго-	
дву павровое.	сти задан.	
Задача № 23	Задача № 24	
На основании анализа графика зависи-	Электродвигатель весом Q установлен на	
мости коэффициента нарастания колебаний	конце двутавровой консольной балки длиной	
В зависимости от величины отношения	1. Режимы работы двигателя характеризуются	
٠	1 1	

работы.

моугольного поперечного сечения $b \times h$. При
каком соотношении сторон b/h площадь по-
перечного сечения бруса будет наибольшей.

равнопрочных балок, имеющих поперечное сечение в виде: 1) круга; 2) квадрата; 3) прямоугольника h/b=1,5.

Задача № 27

Вал сплошного круглого поперечного сечения скручивается моментом T. Во сколько раз меньше будет затрачено материала, если сплошной вал заменить тонкостенной трубой с соотношением диаметров d/D=0.8.

Задача № 28

Круглый ступенчатый вал изготовлен из углеродистой стали с заданными пределами прочности и выносливости. Размеры вала: *D*, *d* и *r* – радиус галтели. Вал изгибается постоянным изгибающим моментом *M*. Определить допускаемый момент [*M*] при заданном коэффициенте запаса прочности по усталости.

Задача № 29

Проверить прочность поршневого пальца ДВС. Материал пальца сталь 20XH3A. Механические характеристики, действительный коэффициент концентрации детали и допускаемый коэффициент запаса заданы. Величина равнодействующей распределенной нагрузки P, действующей на палец, изменяется от P_{max} до P_{min} .

Задача № 30

Шарнирно закрепленная концами балка длиной *I* несет равномерно распреде-ленную нагрузку *q*. Сравнить по затратам материала стоимость деревянной балки круглого поперечного сечения и стальной балки двутаврового сечения; стоимость древесины 35 руб/м³, прокатной стали – 0,15 руб/кг. Дерево материал - хрупкий, сталь – пластичный. Допускаемые напряжения древесины 13, а стали - 165 МПа.

Промежуточная аттестация

Экзамен

- 1. Практический способ расчета на устойчивость.
- 2. Продольно-поперечный изгиб: случаи продольно-поперечного изгиба; приближенный метод решения задачи.
- 3. Расчет движущихся с ускорением элементов конструкций: основные понятия; коэффициент динамичности; определение напряжений при равноускоренном движении.
 - 4. Расчет вращающегося кольца. Пример расчета деталей (маховик).
- 5. Удар: линейный продольный и поперечный удар; скручивающий удар; определение деформаций и напряжений; коэффициент динамичности.
 - Расчет шатуна кривошипно-шатунного механизма.
 - 7. Учет массы упругой системы при ударе. Механические свойства материалов при ударе.
- 8. Колебания: классификация колебаний; определение частоты собственных колебаний системы с одной степенью свободы.
- 9. Определение напряжений и деформаций при вынужденных колебаниях системы с одной степенью свободы.
 - 10. Режимы работы машин и конструкций и их характеристика.
- 11. Усталость: основные понятия; повторно-переменные нагрузки и их характеристики; опытное определение предела выносливости.
- 12. Факторы, влияющие на предел выносливости. Определение коэффициента запаса при симметричном цикле.
 - 13. Диаграмма предельных амплитуд (диаграмма Хея) и ее схематизация.
 - 14. Определение коэффициента запаса при асимметричном цикле по диаграмме Хея.
 - 15. Расчеты на усталостную прочность при простом и сложном нагружении.
 - 16. Расчет безмоментных оболочек вращения: тонкостенные сосуды; формула Лапласа.
- 17. Расчет по несущей способности: основные положения; примеры расчетов по допускаемым нагрузкам при растяжении-сжатии и кручении.

- 18. Расчет по несущей способности: примеры расчетов по допускаемым нагрузкам; оценка эффективности данных расчетов в сравнении с расчетом по допускаемым напряжениям.
- 19. Надежность сельскохозяйственной техники и сопротивление материалов: методы экономического обоснования принятия инженерных решений.
- 20. Надежность сельскохозяйственной техники и сопротивление материалов: проблемы и мероприятия повышения прочностной надежности сельскохозяйственной техники.

Критерии оценивания собеседования (при устном опросе при защите 7 лабораторных работ×4 балла=28 балла):

- *Om* <u>24</u> <u>до 28</u> баллов: ответ содержательный, уверенный и четкий; показано свободное владение материалом различной степени сложности; при ответе на дополнительные вопросы выявляется владение материалом; допускаются один-два недочета, которые студент сам исправляет по замечанию преподавателя;
- *От 19 до 23 баллов:* твердо усвоен основной материал; ответы удовлетворяют требованиям, установленным для оценки «отлично», но при этом допускаются две негрубые ошибки; делаются несущественные пропуски при изложении фактического материала; при ответе на дополнительные вопросы демонстрируется понимание требуемого материала с несущественными ошибками;
- *От _14_ до _18_ баллов:* обучаемый знает и понимает основной материал программы, основные темы, но в усвоении материала имеются пробелы; излагает его упрошенно, с небольшими ошибками и затруднениями; изложение теоретического материала приводится с ошибками, неточно или схематично; появляются затруднения при ответе на дополнительные вопросы;
- $Om \ \underline{0} \ \partial o \ \underline{13} \ \delta annoe$: отказ от ответа; отсутствие минимальных знаний по дисциплине; присутствуют грубые ошибки в ответе; практические навыки отсутствуют; студент не способен исправить ошибки даже с помощью рекомендаций преподавателя.

Критерии оценивания собеседования (по ситуационным задачам при защите 7 практических заданий×4 балла=28 балла):

- *От 24 до 28 баллов:* ответ содержательный, уверенный и четкий; показано свободное владение материалом различной степени сложности; при ответе на дополнительные вопросы выявляется владение материалом; допускаются один-два недочета, которые студент сам исправляет по замечанию преподавателя;
- $Om\ _19\ _do\ _23\ _barnos$: твердо усвоен основной материал; ответы удовлетворяют требованиям, установленным для оценки «отлично», но при этом допускаются две негрубые ошибки; делаются несущественные пропуски при изложении фактического материала; при ответе на дополнительные вопросы демонстрируется понимание требуемого материала с несущественными ошибками;
- *От* <u>14</u> до <u>18</u> баллов: обучаемый знает и понимает основной материал программы, основные темы, но в усвоении материала имеются пробелы; излагает его упрощенно, с небольшими ошибками и затруднениями; изложение теоретического материала приводится с ошибками, неточно или схематично; появляются затруднения при ответе на дополнительные вопросы;
- $Om \ _0 \ _do \ _13 \ _$ баллов: отказ от ответа; отсутствие минимальных знаний по дисциплине; присутствуют грубые ошибки в ответе; практические навыки отсутствуют; студент не способен исправить ошибки даже с помощью рекомендаций преподавателя.

Критерии оценивания тестирования (предэкзаменационное, 4 балла). Тестовые задания оцениваются по шкале: 1 балл за правильный ответ, 0 баллов за неправильный ответ. Итоговая оценка по тесту формируется путем суммирования набранных баллов и отнесения их к общему количеству вопросов в задании. Помножив полученное значение на 100%, можно привести итоговую оценку к балльной следующим образом:

- процент правильных ответов 80 – 100% - <u>4</u> балла, 65 –79 % - <u>3</u> балла, 50 – 64 % - <u>2</u> балла, менее 50 % - <u>1</u> балл.

Критерии оценивания на экзамене (1 вопрос -4...8 баллов, 2 вопрос -4...7 баллов, 3 вопрос -7...10 баллов, в сумме 15...25 баллов):

от 23 до 25 баллов и или «отлично»: студент глубоко и полно владеет содержанием учебного материала и понятийным аппаратом; умеет связывать теорию с практикой, иллюстрировать примерами, фактами, данными научных исследований; осуществляет межпредметные связи, предложения, выводы, логично, четко и ясно излагает ответы на поставленные вопросы; умеет обосновывать свои суждения и профессионально-личностную позицию по излагаемому вопросу; ответ носит самостоятельный характер;

от 19 до 22 баллов и/или «хорошо»: ответ студента соответствует указанным выше критериям, но в содержании имеют место отдельные неточности (несущественные ошибки) при изложении теоретического и практического материала; ответ отличается меньшей обстоятельностью, глубиной, обоснованностью и полнотой; однако допущенные ошибки исправляются самим студентом после дополнительных вопросов экзаменатора;

от _15_ до _18_ баллов и или «удовлетворительно»: студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности и существенные ошибки в определении понятий, формулировке положений; при аргументации ответа студент не опирается на основные положения исследовательских документов; не применяет теоретические знания для объяснения эмпирических фактов и явлений, не обосновывает свои суждения; имеет место нарушение логики изложения; в целом ответ отличается низким уровнем самостоятельности, не содержит собственной профессионально-личностной позиции;

от <u>0</u> до <u>14</u> баллов и или «неудовлетворительно»: студент имеет разрозненные, бессистемные знания; не умеет выделять главное и второстепенное; в ответе допускаются ошибки в определении понятий, формулировке теоретических положений, искажающие их смысл; студент не ориентируется в нормативно-концептуальных, программно-методических, исследовательских материалах, беспорядочно и неуверенно излагает материал; не умеет соединять теоретические положения с педагогической практикой; не умеет применять знания для объяснения эмпирических фактов, не устанавливает межпредметные связи.

Критерии оценивания творческого рейтинга (5 баллов). Результат выполнения студентом индивидуального творческого задания различных уровней сложности, в том числе, участие в различных конференциях и конкурсах на протяжении всего курса изучения дисциплины оценивается по следующим видам работ:

- участие в конкурсе научно-исследовательских работ $om = \frac{1}{2} \partial o = \frac{5}{2} \delta a \pi n o s$,
- участие в научной конференции om 2 до 3 баллов,
- применение творческого подхода в учебном процессе $om \ \underline{\theta} \ \partial o \ \underline{1} \ баллов$.

Критерии оценивания рейтинга личностных качеств (10 баллов). Оценка личностных качеств обучающихся проводится по проявленным ими в процессе реализации дисциплины (модуля): дисциплинированности, посещаемости учебных занятий, сдачи вовремя контрольных мероприятий, ответственности, инициатива и др.:

- выполнение описанных учебных работ на 90% *от* 8 до 10 баллов,
- выполнение описанных учебных работ на 75% om <u>4</u> до <u>7</u> баллов,
- выполнение описанных учебных работ на 50% $om \ \theta \ do \ 3 \ баллов$.

Пример экзаменационного билета

ФГБОУ ВО Белгородский ГАУ			
Инженерный факультет	Кафедра технической механики		
инженерный факультет	и конструирования машин		
Семестр 4	Kypc 2		
Направление: 35.03.06 Агроинженерия (бакалавриат),			
профили: технические системы в агробизнесе, технический сервис в АПК			
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1			

по дисциплине «Сопротивление материалов»

- 1. Основные понятия (определение, задачи) науки о сопротивлении материалов.*
- 2. Расчет элементов конструкций, движущихся с ускорением: основные понятия, примеры. **
- 3. Залача ***

Определить напряжение в шатуне автомобильного двигателя, поперечное сечение которого (рисунок 1) имеет форму двутавра, и проверить прочность при допускаемом напряжении $\sigma_{\rm adm}=140$ МПа.

Найти число шпилек n для крепления головки цилиндра, если внутренний диаметр резьбы d_o =8 мм, а допускаемые напряжения - $\sigma_{\rm adm}$ =80 МПа.

Принять: диаметр цилиндра D=80 мм, давление газов p=3,6 МПа.

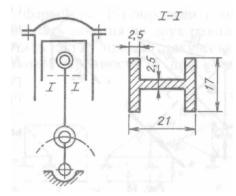


Рисунок 1

Зав. кафедрой:

Экзаменатор:

- * Вопрос для проверки уровня обученности ЗНАТЬ
- ** Вопрос для проверки уровня обученности УМЕТЬ
- *** Вопрос (задача/задание) для проверки уровня обученности ВЛАДЕТЬ Критерии оценивания представлены в п.4 (см. далее).

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура оценки знаний, умений и навыков, характеризующих этапы формирования компетенций, производится преподавателем в форме текущего контроля и промежуточной аттестации.

Для повышения эффективности текущего контроля и последующей промежуточной аттестации студентов осуществляется структурирование дисциплины на модули. Каждый модуль учебной дисциплины включает в себя изучение нескольких законченных разделов (частей) дисциплины.

Основными видами текущего контроля знаний, умений и навыков в течение каждого модуля учебной дисциплины являются устный опрос (при защите лабораторных работ и практических заданий) на рубежном контроле и тестовый контроль.

Студент должен выполнить все контрольные мероприятия, предусмотренные в модуле учебной дисциплины к указанному сроку, после чего преподаватель проставляет балльные оценки, набранные студентом по результатам текущего контроля модуля учебной дисциплины. Контрольное мероприятие считается выполненным, если за него студент получил оценку в баллах, не ниже минимальной оценки, установленной программой дисциплины по данному мероприятию.

Промежуточная аттестация обучающихся проводится в форме экзамена.

Экзамен проводится в письменной форме по утвержденным билетам. Каждый билет содержит три вопроса: первый теоретический вопрос общего характера, второй теоретический вопрос частного характера, третий вопрос в виде ситуационной задачи.

Первый вопрос в экзаменационном билете – вопрос по теоретическому материалу общего характера для оценки уровня обученности «знать», в котором очевиден способ решения, усвоенный студентом при изучении дисциплины.

Второй теоретический вопрос частного характера по применению теоретических знаний при решении конкретных вопросов для оценки уровня обученности «знать» и «уметь», который позволяет оценить не только знания по дисциплине, но и умения ими пользоваться при решении стандартных типовых инженерных задач.

Третий вопрос в виде ситуационной задачи для оценки уровня обученности «владеть», содержание которого предполагает использование комплекса умений и навыков, для того, чтобы обучающийся мог самостоятельно обосновать способ решения и получить конкретный результат в практической ситуации, комбинируя известные ему способы и привлекая имеющиеся знания.

По итогам сдачи экзамена выставляется оценка.

Критерии оценки знаний обучающихся на экзамене:

- оценка *«отпично»* выставляется, если обучающийся обладает глубокими и прочными знаниями программного материала; при ответе на все вопросы билета продемонстрировал исчерпывающее, последовательное и логически стройное изложение; правильно сформулировал понятия и закономерности по вопросам; использовал примеры из дополнительной литературы и практики; сделал вывод по излагаемому материалу;
- оценка *«хорошо»* выставляется, если обучающийся обладает достаточно полным знанием программного материала; его ответ представляет грамотное изложение учебного материала по существу; отсутствуют существенные неточности в формулировании понятий; правильно применены теоретические положения, подтвержденные примерами; сделан вывод; два первых вопроса билета освещены полностью, а третий доводится до логического завершения после наводящих вопросов преподавателя;
- оценка *«удовлетворительно»* выставляется, если обучающийся имеет общие знания основного материала без усвоения некоторых существенных положений; формулирует основные понятия с некоторой неточностью; затрудняется в приведении примеров, подтверждающих теоретические положения; все вопросы билета начаты и при помощи наводящих вопросов преподавателя доводятся до конца;
- оценка «неудовлетворительно» выставляется, если обучающийся не знает значительную часть программного материала; допустил существенные ошибки в процессе изложения: не умеет выделить главное и сделать вывод; приводит ошибочные определения; ни один вопрос билета не рассмотрен до конца, даже при помощи наводящих вопросов преподавателя.

Основным методом оценки знаний, умений и навыков и/или опыта деятельности, характеризующих этапы формирования компетенций является балльно-рейтинговая система, которая регламентируется Положением о балльно-рейтинговой системе оценки обучения в ФГБОУ ВО Белгородский ГАУ. Основными видами поэтапного контроля результатов обучения студентов являются: рубежный рейтинг, творческий рейтинг, рейтинг личностных качеств, рейтинг сформированности прикладных практических требований, промежуточная аттестация.

Уровень развития компетенций оценивается с помощью рейтинговых баллов.

Рейтинги	Характеристика рейтингов	Максимум баллов
Рубежный	Отражает работу студента на протяжении всего периода изучения дисциплины. Определяется суммой баллов, которые студент получит по результатам изучения каждого модуля.	60
Творческий	Результат выполнения студентом индивидуального творческого задания различных уровней сложности, в том числе, участие в различных конференциях и конкурсах на протяжении всего курса изучения дисциплины.	5
Рейтинг лич- ностных ка- честв	Оценка личностных качеств обучающихся, проявленных ими в процессе реализации дисциплины (модуля) (дисциплинированность, посещаемость учебных занятий, сдача вовремя контрольных мероприятий, ответственность,	10

	инициатива и др.)	
Рейтинг сфор- мированности прикладных практических требований	Оценка результата сформированности практических навыков по дисциплине (модулю), определяемый преподавателем перед началом проведения промежуточной аттестации и оценивается как «зачтено» или «не зачтено».	+
Промежуточ- ная аттестация	Является результатом аттестации на окончательном этапе изучения дисциплины по итогам сдачи зачета или экзамена. Отражает уровень освоения информационно-теоретического компонента в целом и основ практической деятельности в частности.	25
Итоговый рейтинг	Определяется путём суммирования всех рейтингов	100

Общий рейтинг по дисциплине складывается из рубежного, творческого, рейтинга личностных качеств, рейтинга сформированности прикладных практических требований, промежуточной аттестации (экзамена).

Рубежный рейтинг – результат текущего контроля по каждому модулю дисциплины, проводимого с целью оценки уровня знаний, умений и навыков студента по результатам изучения модуля. Оптимальные формы и методы рубежного контроля: устные собеседования, письменные контрольные опросы, в т.ч. с использованием ПЭВМ и ТСО, результаты выполнения лабораторных и практических заданий. В качестве практических заданий могут выступать крупные части (этапы) курсовой работы или проекта, расчетно-графические задания, микропроекты и т.п.

Промежуточная аттестация – результат аттестации на окончательном этапе изучения дисциплины по итогам сдачи зачета экзамена, проводимого с целью проверки освоения информационно-теоретического компонента в целом и основ практической деятельности в частности. Оптимальные формы и методы выходного контроля: письменные экзаменационные или контрольные работы, индивидуальные собеседования.

Творческий рейтинг – составная часть общего рейтинга дисциплины, представляет собой результат выполнения студентом индивидуального творческого задания различных уровней сложности.

Рейтинг личностных качеств - оценка личностных качеств обучающихся, проявленных ими в процессе реализации дисциплины (модуля) (дисциплинированность, посещаемость учебных занятий, сдача вовремя контрольных мероприятий, ответственность, инициатива и др.

Рейтинг сформированности прикладных практических требований -оценка результата сформированности практических навыков по дисциплине (модулю), определяемый преподавателем перед началом проведения промежуточной аттестации и оценивается как «зачтено» или «не зачтено».

В рамках балльно-рейтинговой системы контроля успеваемости студентов, семестровая составляющая балльной оценки по дисциплине формируется при наборе заданной в программе дисциплины суммы баллов, получаемых студентом при текущем контроле в процессе освоения модулей учебной дисциплины в течение семестра.

Итоговая оценка /зачёта/ компетенций студента осуществляется путём автоматического перевода баллов общего рейтинга в стандартные оценки. Максимальная сумма рейтинговых баллов по учебной дисциплине составляет 100 баллов.

По дисциплине с *экзаменом* используют следующую шкалу пересчета суммарного количества набранных баллов в четырехбалльную систему:

Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
менее 51 балла	51-67 баллов	67,1-85 баллов	85,1-100 баллов