Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Алейник Станислав Николаевич

Должность: Ректор е деральное государственное бюдже тное образовательное учреждение дата подписания: 11.07.2021 21:55:01

Уникальный программный ключ: высшего образования

5258223550еа (ТВе-37736р) буде (АНТ 34886) де 25693 беррина за грарный университет им. В.Я. Горина»

Кафедра электрооборудования и электротехнологий в АПК

(наименование кафедры)

УТВЕРЖДЕН

на заседании кафедры

«<u>07</u>» <u>04</u> <u>2021</u> г., протокол № <u>9</u>

Заведующий кафедрой

Вендин С.В.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

ОСНОВЫ ГИДРАВЛИКИ И ТЕПЛОТЕХНИКИ

(наименование дисциплины)

35.02.16 «Эксплуатация и ремонт сельскохозяйственной техники и оборудования» (код и наименование направления подготовки)

Техник-механик

Квалификация (степень) выпускника

1. Паспорт фонда оценочных средств по учебной дисциплине ОП05 Основы гидравлики и теплотехники (наименование дисциплины/МДК)

$N_{\underline{0}}$	Контролируемые	Код контролируемой	Наименование
Π/Π	разделы (темы)	компетенции	оценочного средства
	дисциплины*	(или ее части)	
1	Гидравлика	OK 01, OK 02, OK 10;	Устный или письменный
		ПК 1.1 - ПК 1.6,	опрос, реферат (сообщение,
		ПК 2.3, ПК 3.1, ПК 3.2, ПК 3.4 - ПК 3.8	доклад, презентация), тест,
		11K 3.4 - 11K 3.6	кейс-задача
2	Гидравлические	ОК 01, ОК 02, ОК 10;	Устный или письменный
	машины	ПК 1.1 - ПК 1.6,	опрос, реферат (сообщение,
		ПК 2.3, ПК 3.1, ПК 3.2,	доклад, презентация), тест,
		ПК 3.4 - ПК 3.8	кейс-задача
3	Гидропривод	OK 01, OK 02, OK 10;	Устный или письменный
	1 1	ПК 1.1 - ПК 1.6,	опрос, реферат (сообщение,
		ПК 2.3, ПК 3.1, ПК 3.2,	доклад, презентация), тест,
		ПК 3.4 - ПК 3.8	кейс-задача
		074.04 074.09 074.40	
4	Техническая	OK 01, OK 02, OK 10;	Устный или письменный
	термодинамика	ПК 1.1 - ПК 1.6, ПК 2.3, ПК 3.1, ПК 3.2,	опрос, реферат (сообщение,
		ПК 3.4 - ПК 3.8	доклад, презентация), тест
5	Тепломассообмена	OK 01, OK 02, OK 10;	Устный или письменный
		ПК 1.1 - ПК 1.6,	опрос, реферат (сообщение,
		ПК 2.3, ПК 3.1, ПК 3.2,	доклад, презентация), тест
		ПК 3.4 - ПК 3.8	
6	Применение	OK 01, OK 02, OK 10;	Устный или письменный
	теплоты в	ПК 1.1 - ПК 1.6,	опрос, реферат (сообщение,
	сельском хозяйстве	ПК 2.3, ПК 3.1, ПК 3.2,	доклад, презентация), тест
		ПК 3.4 - ПК 3.8	- ,
7	Итоговая	OK 01, OK 02, OK 10;	Ситуационная задача,
	аттестация	ПК 1.1 - ПК 1.6,	экзамен
	•	ПК 2.3, ПК 3.1, ПК 3.2,	
		ПК 3.4 - ПК 3.8	

^{*} Наименование темы (раздела) или тем (разделов) берется из рабочей программы дисциплины.

2. Экзаменационные материалы

2.1 Комплект экзаменационных билетов

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина»				
Факультет среднего Кафедра электрооборудования и				
профессионального образования		электротехнологий в АПК		
Семест		Кур		
	35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования			
НE	КЗАМЕНАЦИОН	ный билет № 1	1	
по дисц	иплине «Основы ги	дравлики и теплотехі	ники»	
1. Гидростатическое да	1. Гидростатическое давление и его свойства.			
2. Характеристика цент				
3. Гидравлические пере	едачи (назначение, до	остоинства). Гидромуф	гы.	
Зав. кафедрой:	Вендин С.В.	Экзаменатор:	Вольвак С.Ф.	
ФГБОУ ВО «Белгор	одский государственны	ый аграрный университет	гим. В.Я. Горина»	
Факультет с	-	Кафедра электро		
профессиональног	•	электротехно		
Семест	гр 5	Кур	c 3	
35.02.16 Эксплуата:	ция и ремонт сельско	охозяйственной техник	и и оборудования	
ЭH	КЗАМЕНАЦИОН	ный билет № 2	2	
по дисциплине «Основы гидравлики и теплотехники»				
1. Основные физически	1. Основные физические свойства жидкости.			
2. Пересчет характеристик насоса при изменении частоты вращения и диаметра				
2. Пересчет характерис			я и диаметра	
2. Пересчет характерис рабочего колеса.			я и диаметра	
	тик насоса при измен	нении частоты вращени	я и диаметра	
рабочего колеса.	тик насоса при измен	нении частоты вращени	я и диаметра Вольвак С.Ф.	
рабочего колеса. 3. Общая характеристина Зав. кафедрой:	тик насоса при изменка объемного гидроп Вендин С.В.	нении частоты вращени ривода.	Вольвак С.Ф.	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор	тик насоса при изменка объемного гидроп Вендин С.В.	нении частоты вращени ривода. Экзаменатор:	Вольвак С.Ф. г им. В.Я. Горина»	
рабочего колеса. 3. Общая характеристия Зав. кафедрой:	тик насоса при изменка объемного гидроп Вендин С.В. одский государственны среднего	нении частоты вращени ривода. Экзаменатор: ый аграрный университет	Вольвак С.Ф. г им. В.Я. Горина» оборудования и	
рабочего колеса. 3. Общая характеристина Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с	тик насоса при изменка объемного гидроп Вендин С.В. одский государственны среднего го образования	нении частоты вращени ривода. Экзаменатор: ый аграрный университет Кафедра электро	Вольвак С.Ф. гим. В.Я. Горина» оборудования и логий в АПК	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональной Семест	тик насоса при изменка объемного гидроп Вендин С.В. одский государственны среднего го образования пр 5	нении частоты вращени ривода. Экзаменатор: ый аграрный университет Кафедра электро электротехно.	Вольвак С.Ф. г им. В.Я. Горина» оборудования и логий в АПК ос 3	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональног Семест 35.02.16 Эксплуатая	тик насоса при изменка объемного гидроп Вендин С.В. одский государственны среднего го образования гр 5 ция и ремонт сельско	нении частоты вращени ривода. Экзаменатор: ый аграрный университет Кафедра электро электротехно. Кур	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональног Семест 35.02.16 Эксплуатая	тик насоса при изменка объемного гидроп Вендин С.В. одский государственны среднего по образования премонт сельско СЗАМЕНАЦИОН	нении частоты вращени ривода. Экзаменатор: й аграрный университет Кафедра электро электротехно Кур	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональног Семест 35.02.16 Эксплуатая эн по дисц 1. Гидравлические двиг	тик насоса при изменка объемного гидроп Вендин С.В. одский государственны реднего го образования гр 5 ция и ремонт сельско СЗАМЕНАЦИОН иплине «Основы ги гатели, основные пар	ривода. Экзаменатор: ый аграрный университет Кафедра электротехно. Ухозяйственной техник НЫЙ БИЛЕТ № 3	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования 3 ники»	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональног Семест 35.02.16 Эксплуатая ЭН по дисц 1. Гидравлические двиг 2. Водопроводные насо	тик насоса при изменка объемного гидроп Вендин С.В. одский государственных реднего го образования гр 5 ция и ремонт сельско СЗАМЕНАЦИОН иплине «Основы гистатели, основные пар	ривода. Экзаменатор: й аграрный университет Кафедра электротехно. Ухозяйственной техник НЫЙ БИЛЕТ № 3 дравлики и теплотехнаметры. Поворотные д	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования В	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональног Семест 35.02.16 Эксплуатая ЭН по дисц 1. Гидравлические двиг	тик насоса при изменка объемного гидроп Вендин С.В. одский государственных реднего го образования гр 5 ция и ремонт сельско СЗАМЕНАЦИОН иплине «Основы гистатели, основные пар	ривода. Экзаменатор: й аграрный университет Кафедра электротехно. Ухозяйственной техник НЫЙ БИЛЕТ № 3 дравлики и теплотехнаметры. Поворотные д	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования 3 ники»	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональной Семест 35.02.16 Эксплуатая ЭН по дисц 1. Гидравлические двиг 2. Водопроводные насо	тик насоса при изменка объемного гидроп Вендин С.В. одский государственных реднего го образования гр 5 ция и ремонт сельско СЗАМЕНАЦИОН иплине «Основы гистатели, основные пар	ривода. Экзаменатор: й аграрный университет Кафедра электротехно. Ухозяйственной техник НЫЙ БИЛЕТ № 3 дравлики и теплотехнаметры. Поворотные д	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования 3 ники»	
рабочего колеса. 3. Общая характеристия Зав. кафедрой: ФГБОУ ВО «Белгор Факультет с профессиональног Семест 35.02.16 Эксплуатая ЭН по дисц 1. Гидравлические двиг 2. Водопроводные насо	тик насоса при изменка объемного гидроп Вендин С.В. одский государственных реднего го образования гр 5 ция и ремонт сельско СЗАМЕНАЦИОН иплине «Основы гистатели, основные пар	ривода. Экзаменатор: й аграрный университет Кафедра электротехно. Ухозяйственной техник НЫЙ БИЛЕТ № 3 дравлики и теплотехнаметры. Поворотные д	Вольвак С.Ф. Тим. В.Я. Горина» оборудования и логий в АПК ос 3 и и оборудования 3 ники»	

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего электротехнологий в АПК профессионального образования Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4 по дисциплине «Основы гидравлики и теплотехники» 1. Дифференциальные уравнения равновесия жидкости (уравнения Эйлера). 2. Поршневые насосы. Устройство, принцип действия, способы уменьшения неравномерности подачи. 3. Общие сведения о технической термодинамике. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Kypc 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5 по дисциплине «Основы гидравлики и теплотехники» 1. Поверхности равного давления. 2. Работа насоса на сеть. Последовательная работа насосов. 3. Термодинамическая система. Вендин С.В. Зав. кафедрой: Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Курс 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6 по дисциплине «Основы гидравлики и теплотехники» 1. Основное уравнение гидростатики. 2. Центробежные насосы (назначение, классификация, принцип действия, маркировка). 3. Объемные гидроприводы. Принципиальная схема гидропривода с поступательным движением выходного звена. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф.

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Kypc 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7 по дисциплине «Основы гидравлики и теплотехники» 1. Виды давления. Приборы для измерения давления. 2. Гидравлические машины (назначение, классификация, основные рабочие параметры). 3. Особенности сельскохозяйственного водоснабжения. Требования к качеству воды. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8 по дисциплине «Основы гидравлики и теплотехники» 1. Сила гидростатического давления жидкости на плоские поверхности. 2. Основные понятия об объемных гидромашинах. Классификация. 3. Уравнение состояния. Венлин С.В. Вольвак С.Ф. Зав. кафедрой: Экзаменатор: ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Курс 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9 по дисциплине «Основы гидравлики и теплотехники» 1. Сила гидростатического давления на криволинейные поверхности. 2. Работа насоса на сеть. Регулирование режима работы насоса. 3. Термодинамический процесс. Зав. кафедрой: Венлин С.В. Вольвак С.Ф. Экзаменатор:

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Kypc 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10 по дисциплине «Основы гидравлики и теплотехники» 1. Эпюры гидростатического давления. 2. Роторные насосы, основные параметры. Шестеренные насосы. 3. Общие сведения о мелиорации. Орошение. Зав. кафедрой: Вендин С.В. Вольвак С.Ф. Экзаменатор: ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11 по дисциплине «Основы гидравлики и теплотехники» 1. Закон Архимеда. 2. Устройство насосной установки. 3. Объемные гидроприводы. Принципиальная схема гидропривода с поворотным движением выходного звена. Вендин С.В. Вольвак С.Ф. Зав. кафедрой: Экзаменатор: ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 по дисциплине «Основы гидравлики и теплотехники» 1. Простейшие гидравлические машины. 2. Гидравлические двигатели, основные параметры. Гидромоторы. 3. Источники водоснабжения (поверхностные и подземные источники воды). Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф.

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Kypc 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 по дисциплине «Основы гидравлики и теплотехники» 1. Виды движения жидкости и основные характеристики движения. 2. Работа насосов на сеть. Параллельная работа насосов. 3. Внутренняя энергия. Вендин С.В. Зав. кафедрой: Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14 по дисциплине «Основы гидравлики и теплотехники» 1. Уравнение неразрывности потока. 2. Специальные водоподъемные средства (струйные насосы, ленточные водоподъемники, эрлифты). Устройство, принцип действия. 3. Работа и теплота. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего электротехнологий в АПК профессионального образования Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15 по дисциплине «Основы гидравлики и теплотехники» 1. Уравнение Д. Бернулли. Применение уравнения Д. Бернулли для практических целей. 2. Осевые насосы (устройство, принцип действия, характеристики). 3. Аналитическое выражение первого закона термодинамики. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф.

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Kypc 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16 по дисциплине «Основы гидравлики и теплотехники» 1. Природа гидравлических сопротивлений. Основное уравнение равномерного движения жидкости. 2. Элементы гидропривода (насосы и гидродвигатели; гидрораспределители; клапаны). 3. Работа расширения – сжатия в термодинамическом процессе. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17 по дисциплине «Основы гидравлики и теплотехники» 1. Режимы движения жидкости. Число Рейнольдса. 2. Роторные насосы, основные параметры. Радиально-поршневой насос. 3. Водозаборные сооружения из поверхностных и подземных источников. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и электротехнологий в АПК профессионального образования Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18 по дисциплине «Основы гидравлики и теплотехники» 1. Природа гидравлических сопротивлений. Потери напора по длине в каналах. 2. Кавитация насосов (методы борьбы с кавитацией, допустимая высота всасывания). 3. Теплоемкость. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф.

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19 по дисциплине «Основы гидравлики и теплотехники» 1. Коэффициент гидравлического трения. 2. Гидравлические двигатели, основные параметры. Гидроцилиндры. 3. Энтальпия. Вендин С.В. Зав. кафедрой: Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20 по дисциплине «Основы гидравлики и теплотехники» 1. Природа гидравлических сопротивлений. Местные потери напора. 2. Роторные насосы, основные параметры. Роторно-пластинчатые насосы. 3. Основные схемы сельскохозяйственного водоснабжения. Вендин С.В. Вольвак С.Ф. Зав. кафедрой: Экзаменатор: ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Kypc 3 Семестр 5 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21 по дисциплине «Основы гидравлики и теплотехники» 1. Гидравлический расчет напорных трубопроводов. Расчет коротких трубопроводов. 2. Роторные насосы, основные параметры. Радиально-поршневые насосы. 3. Термический КПД. Холодильный коэффициент. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф.

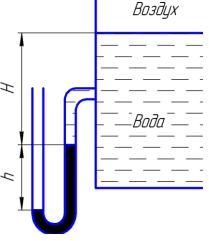
ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22 по дисциплине «Основы гидравлики и теплотехники» 1. Гидравлический расчет напорных трубопроводов. Расчет длинных трубопроводов при последовательном соединении труб. 2. Роторные насосы, основные параметры. Аксиально-поршневые насосы. 3. Энтропия. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23 по дисциплине «Основы гидравлики и теплотехники» 1. Гидравлический расчет напорных трубопроводов. Расчет трубопровода при параллельном соединении труб. 2. Применение объемного гидропривода в сельскохозяйственной технике. 3. Общая характеристика второго закона термодинамики. Зав. кафедрой: Вендин С.В. Вольвак С.Ф. Экзаменатор: ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 24 по дисциплине «Основы гидравлики и теплотехники» 1. Гидравлический расчет напорных трубопроводов с равномерным путевым расходом. 2. Поршневые насосы. Устройство, принцип действия, способы уменьшения неравномерности подачи. 3. Циклы поршневых двигателей внутреннего сгорания. Вольвак С.Ф. Зав. кафедрой: Вендин С.В. Экзаменатор:

ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 25 по дисциплине «Основы гидравлики и теплотехники» 1. Гидравлический удар в трубопроводах. 2. Основные понятия об объемных гидромашинах. Классификация. 3. Виды теплообмена. Вендин С.В. Зав. кафедрой: Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 26 по дисциплине «Основы гидравлики и теплотехники» 1. Истечение жидкости через отверстия и насадки. 2. Работа насоса на сеть. Последовательная работа насосов. 3. Циклы паросиловых установок. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего электротехнологий в АПК профессионального образования Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 27 по дисциплине «Основы гидравлики и теплотехники» 1. Закон Архимеда. 2. Устройство насосной установки. 3. Основной закон теплопроводности (закон Фурье). Вендин С.В. Зав. кафедрой: Вольвак С.Ф. Экзаменатор:

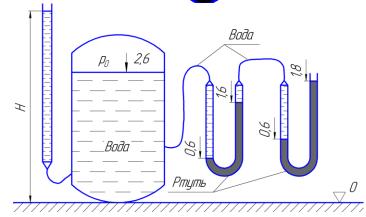
ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 28 по дисциплине «Основы гидравлики и теплотехники» 1. Работа насоса на сеть. Регулирование режима работы насоса. 2. Объемные гидроприводы. Принципиальная схема гидропривода с вращательным движением выходного звена. 3. Количественные характеристики переноса теплоты. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Факультет среднего Кафедра электрооборудования и профессионального образования электротехнологий в АПК Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 29 по дисциплине «Основы гидравлики и теплотехники» 1. Виды движения жидкости и основные характеристики движения. 2. Гидравлические передачи (назначение, достоинства). Гидротрансформаторы. 3. Теплопроводность. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф. ФГБОУ ВО «Белгородский государственный аграрный университет им. В.Я. Горина» Кафедра электрооборудования и Факультет среднего электротехнологий в АПК профессионального образования Семестр 5 Kypc 3 35.02.16 Эксплуатация и ремонт сельскохозяйственной техники и оборудования ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 30 по дисциплине «Основы гидравлики и теплотехники» 1. Уравнение Д.Бернулли. Применение уравнения Д.Бернулли для практических целей. 2. Нормы и режимы водопотребления. 3. Теплопроводность при стационарном режиме. Зав. кафедрой: Вендин С.В. Экзаменатор: Вольвак С.Ф.

Критерии оценки:

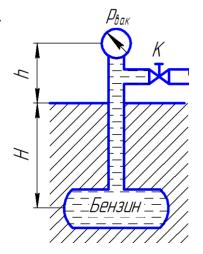
- оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала;
- оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности;
- оценка «удовлетворительно» выставляется обучающимся, обнаружившим знания основного учебно-программного материала в объёме, необходимом для дальнейшей учёбы и предстоящей работы по профессии, справляющимся с выполнением заданий, предусмотренных программой, знакомым с основной литературой, рекомендованной программой; как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя;
- оценка «неудовлетворительно» выставляется обучающимся, которые не могут продолжать обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

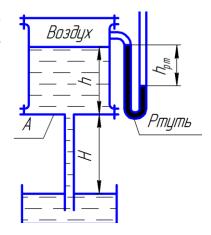

Составитель		С.Ф. Вольвак
	(подпись)	
« »	20 г.	

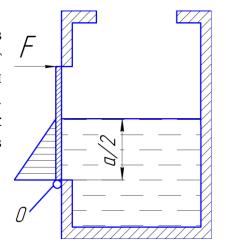
2.2 Перечень ситуационных задач

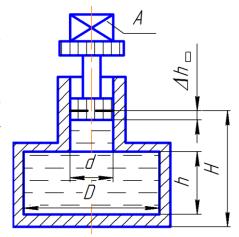

Задание 1

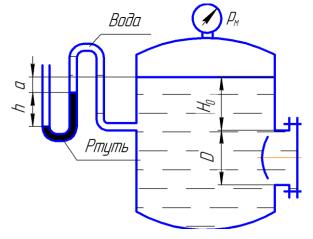
Вариант №1. Канистра, заполненная бензином и не содержащая воздуха, нагрелась на солнце до температуры t_2 . На сколько повысилось бы давление бензина внутри канистры, если бы она была абсолютно жесткой? Начальная температура бензина t_2 . Модуль объемной упругости бензина принять равным K = 1300 МПа, коэффициент температурного расширения $\beta_t = 8 \cdot 10^{-4}$ 1/град.

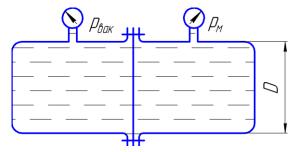

Вариант №2. Определить абсолютное давление воздуха в сосуде, если показание ртутного прибора h, высота H=1 м. Плотность ртути $\rho=13600$ кг/м³. Атмосферное \approx давление 736 мм рт.ст.


Вариант №3. Определить избыточное давление p_0 воздуха в напорном баке по показанию манометра, составленного из двух U-образных трубок с ртутью. Соединительные трубки заполнены водой. Отметки уровней даны в метрах. Плотность ртути ρ .

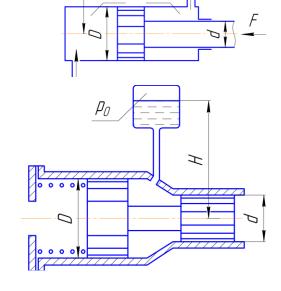

Вариант №4. При перекрытом кране трубопровода K определить абсолютное давление в резервуаре, зарытом на глубине H, если показание вакуумметра, установленного на высоте h=1,7 м, равно $p_{вак}=0,02$ МПа. Атмосферное давление соответствует $h_a=740$ мм рт. ст. Плотность бензина $\rho_{\delta}=700$ кг/м³.

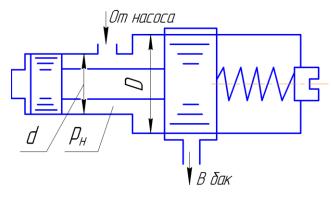

Вариант №5. В сосуде A и в трубе вода находится в покое; показание ртутного прибора h_{pm} . Определить высоту H, если h = 1 м.


Вариант №6. Квадратное отверстие со стороной а в стенке бака закрыто плоской заслонкой, которая может поворачиваться вокруг оси шарнира О. Размеры заслонки соответствуют размерам отверстия в стенке. Определить силу F, которую необходимо приложить к верхнему краю заслонки, чтобы удерживать её в закрытом состоянии при заполнении бака водой.


Вариант №7. Определить объемный модуль упругости жидкости, если под действием груза A массой 250 кг поршень прошел расстояние $\Delta h = 5$ мм. Начальная высота положения поршня (без груза) H = 1,5 м, диаметры поршня d и резервуара D, высота резервуара h = 1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

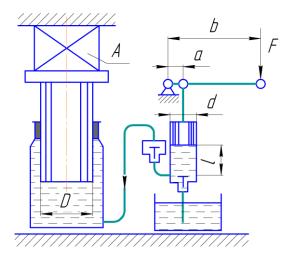
Вариант №8. Определить силу давления жидкости (воды) на крышку люка диаметром D в следующем случае: показание манометра $p_{\scriptscriptstyle M}=0.08~{\rm M}\Pi{\rm a};~H_0=1.5~{\rm M}.$


Вариант №9. Определить значение силы, действующей на перегородку, которая разделяет бак, если ее диаметр D, показания вакуумметра $p_{\text{вак}}$ и манометра $p_{\text{м}}$.

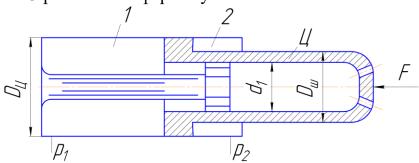

 $p_{\mathcal{O}}$

Вариант №10. Определить давление p_1 жидкости, которую необходимо подвести к гидроцилиндру, чтобы преодолеть усилие, направленное вдоль штока F = 1 кН. Диаметры: цилиндра D, штока d. Давление в бачке $p_0 = 50$ кПа, высота $H_0 = 5$ м. Силу трения не учитывать. Плотность жидкости $\rho = 1000$ кг/м³.

Вариант №11. Система из двух поршней, соединенных штоком, находится в равновесии. Определить силу, сжимающую пружину. Жидкость, находящаяся между поршнями и в бачке, - масло с плотностью $\rho = 870 \text{ кг/м}^3$. Диаметры: D = 80 мм: d = 30 мм; высота H; избыточное давление p_0 .



Вариант №12. Определить величину предварительного поджатия пружины дифференциального предохранительного клапана (мм), обеспечивающего начало открытия клапана при $p_{\scriptscriptstyle H}=0,8$ МПа. Диаметры клапана: D и d; жесткость пружины c=6 Н/мм. Давление справа от большого и слева от малого поршней – атмосферное.



Вариант №13. Давление в цилиндре гидравлического пресса повышается в результате нагнетания в него жидкости ручным поршневым насосом и сжатия ее в цилиндре. Определить число двойных ходов n поршня ручного насоса, необходимое для увеличения силы прессования детали A от 0 до F MH, если диаметры поршней: D = 500 мм, d = 10 мм; ход поршня ручного насоса l мм; объемный модуль упругости жидкости K = 1300 МПа; объем жидкости в прессе W = 60 л.

Чему равно максимальное усилие F на рукоятке насоса при ходе нагнетания, если b/a=10?

Вариант №14. Определить давление p_1 , необходимое для удержания цилиндром U внешней нагрузки F = 70 кН. Противодавление в полости 2 равно $p_2 = 0.3$ МПа, давление в полости 3 равно атмосферному.

Задание 2

Вариант № 1. В баллоне объемом 30 дм³ находится углекислый газ под давлением $5 \cdot 10^6$ Па при температуре 27 0 С. Определить массу газа, считая углекислый газ идеальным газом (R=188,9 Дж/кг К).

Вариант №2. При температуре 27 0 С и давлении 10^{5} Па объем воздушного шара, заполненного гелием, равен 500 м^{3} . каким будет объем этого шара, если при подъеме в верхние слои атмосферы температура понизится до -33^{0} С, а давление станет равным $5\cdot10^{4}$ Па? Массу гелия считать постоянной.

Вариант №3. Как изменится объем пузырька воздуха при всплывании его со дна озера глубиной 20 м к поверхности воды? Температура воды у дна озера и у поверхности одинакова. Атмосферное давление принимаем равным 10^5 Па.

Вариант №4. Под каким давлением находится углекислый газ в баллоне огнетушителя емкостью 2 дм³, если баллон до заполнения имел массу 4,2 кг, а после заполнения 5,6 кг? Температура баллона 37 0 С. (R=188,9 Дж/кг K).

Вариант №5. Определить максимальный КПД тепловой машины, работающей между температурами 400 и 18^оС.

Вариант №6. В баллоне объемом 0.5 м^3 находится воздух под давлением $5 \cdot 10^6 \text{ Па}$ при температуре равной температуре окружающей среды $t = 20^{\circ}\text{C}$. Какую максимальную работу может совершить сжатый воздух при его изотермическом расширении, если атмосферное давление равно $P_o = 10^5 \text{ Па}$.

Вариант №7. Определить работоспособность (эксергию) 200 кДж теплоты продуктов сгорания в топке при температуре 1000^{0} С. Температура среды 10^{0} С. Определить потерю эксергии этой теплоты, если вся она будет передана тепловому источнику (пару в котле) с температурой 500^{0} С.

Вариант №8. 1 л воды нагревается с помощью электрического кипятильника мощностью 300 Вт. За какое время вода нагреется до температуры кипения, если теплообмен с окружающей средой отсутствует, а начальная температура воды равна 20 °C? (*c*=4190 Дж/(кг K) – массовая теплоемкость воды).

Вариант №9. Масса m=12г газа занимает объем V=4л при температуре t_1 =7 0 С. После нагревания газа при постоянном давлении его плотность стала равной ρ =0,6кг/м 3 . До какой температуры t_2 нагрели газ?

Вариант №10. Баллон объемом V=12л наполнен азотом при давлении P=8,1 МПа и температуре $t=17^{0}$ С. Какая масса азота находится в баллоне?

Вариант №11. Изотермическому сжатию подвергается 8 кг углекислого газа при давлении Р и температуре t ⁰C. В результате объем уменьшается в 1,5 раза. Определить начальные и конечные параметры рабочего тела, затраченную работу и отведенную теплоту.

Вариант №12. На поверхности Венеры температура и атмосферное давление соответственно равны 750 К и 9120 кПа. Найти плотность атмосферы у поверхности планеты, считая, что она состоит из углекислого газа.

Вариант №13. Из баллона со сжатым водородом объемом V=10л вследствие неисправности вентиля вытекает газ. При температуре $t_1=7^0$ С манометр показывал P=4,9·10⁶Па. Через некоторое время при температуре $t_2=17^0$ С манометр показал такое же давление. Сколько газа вытекло?

Вариант №14. Воздух в количестве 12 кг при абсолютном давлении 6 бар и температуре 300 К расширяется при T = const, при этом объем возрастает в 4 раза. Определить начальные и конечные параметры воздуха, количество подведенной теплоты и работу расширения

Вариант №15. В закрытом сосуде находится масса m=14г азота при давлении $P_1=0,1$ МПа и температуре $t_1=27^0$ С. После нагревания давление в сосуде повысилось в 5 раз. До какой температуры t_2 был нагрет газ? Найти объем сосуда V и количество теплоты Q, сообщенное газу.

Вариант №16. Два кислородных баллона одинакового объема соединены трубопроводом. Определить давление, которое установится в баллонах при температуре 25° C, если до соединения параметры газа в первом баллоне были p_1 =8,0 МПа и t_1 =30°C, а во втором p_2 =6,0 МПа и t_2 =20°C.

Задание 3

Вариант №1. Определить тепловой поток через бетонную стену здания толщиной 200 мм, высотой 2,5 м и длиной 2 м, если температуры на ее поверхностях t_{C1} =20 °C, t_{C1} = -10 °C, а коэффициент теплопроводности λ =1 Bt/(м·K).

Вариант №2. Определить коэффициент теплопроводности материала стенки толщиной 50 мм, если плотность теплового потока через нее $q = 100 \text{ Bt/m}^2$, а разность температур на ее поверхностях $\Delta t = 20 \, ^{\circ}\text{C}$.

Вариант №3. Во сколько раз уменьшаются теплопотери через стенку здания, если между двумя слоями кирпичей толщиной по 250 мм установить прокладку пенопласта толщиной 50 мм, $\lambda_{\text{кир}} = 0.5 \text{ Bt/(M·K)}$; , $\lambda_{\text{пен}} = 0.05 \text{ Bt/(M·K)}$.

Вариант №4. Рассчитать теплопотери теплоты через глухую стену здания размером 2,5 х 4 м зимой (t_1 =20 °C, t_1 = -20 °C). Стена сделана из кирпича λ = 0,5 BT/(м·К), толщина стены δ = 0,5 м, α_1 = 10 BT/(м²·К), α_2 = 30 BT/(м²·К).

Вариант №5. Лед на реке имеет толщину 300 мм и покрыт слоем снега толщиной 200 мм. Температура на наружной поверхности снега -15°C, а на поверхности льда, обращенной к воде, 0°C. Найти плотность теплового потока через эти два слоя.

Вариант №6. Плоскую поверхность с температурой 400°С надо изолировать пеношамотом так, чтобы потери теплоты не превышали 450 Вт/м² при температуре на внешней поверхности изоляции 43°С. Найти толщину слоя изоляции.

Вариант №7. Оконная рама состоит из двух слоев стекла толщиной по 5 мм каждый. Между стеклами находится слой сухого неподвижного воздуха толщиной 6 мм со средней температурой 0°С. Площадь поверхности окна 4,5 м². Определить потерю теплоты теплопроводностью через окно, если разность температур на внешних поверхностях стекол 25 °С.

Вариант №8. Для уменьшения потерь теплоты от паропровода диаметром 10×1 мм предлагаются изоляционные материалы: асбест и стекловата. Какой материал целесообразнее принять в качестве изоляции, если от поверхности изоляции к окружающей среде коэффициент теплоотдачи $\alpha_2 = 10 \text{ BT/(M}^2 \cdot \text{K)}$?

Вариант №9. Стальная труба диаметром 45×2,5 мм покрывается снаружи и внутри слоем эмали толщиной по 0,5 мм [$\lambda_{\text{эм}} = 1,05 \text{ Вт/(м·К)}$]. Во сколько раз увеличится термическое сопротивление стенки после эмалирования? Расчет сделать по формулам для плоской стенки.

Вариант №10. Сосуд, наполненный жидким газом, имеет на наружной поверхности температуру -190 °C. Он покрывается слоем шлаковаты толщиной 250 мм. Температура воздуха в помещении 20 °C. Какой тепловой поток пройдет через 1 м² изоляции, если пренебречь термическим сопротивлением теплоотдачи со стороны воздуха?

Вариант №11. Печь изнутри выложена динасовым кирпичом, за которым следует слой красного кирпича толщиной 250 мм и, наконец, снаружи - слой силикатного кирпича толщиной 60 мм. На внутренней поверхности печи температура 1150°С, на наружной 60 °С. Какова должна быть толщина слоя динасового кирпича, чтобы температура красного кирпича не превышала 820 °С? Найти температуру на внутренней поверхности слоя силикатного кирпича.

Вариант №12. Стенка опытной установки покрыта снаружи изоляционным слоем толщиной 260 мм. Она обогревается изнутри так, что на наружной поверхности изоляции поддерживается температура 35 °C. Для изучения тепловых потерь в изоляцию на глубину 50 мм от наружной поверхности заделана термопара, которая показала 70°C. Определить температуру на поверхности контакта стенки и изоляции.

Вариант №13. Стенка холодильной камеры сделана из пробковой плиты толщиной 100 мм и общита с обеих сторон сосновыми досками толщиной 15 мм каждая. На внешних поверхностях досок температуры соответственно: +20 и -12 °C. Определить потери теплоты через 1 м^2 поверхности стенки и температуры на обеих поверхностях пробковой плиты. Где в пробковой плите располагается изотермическая поверхность t = 0 °C.

Вариант №14. Паропровод с внешним диаметром 80 мм и температурой на наружной поверхности 180 °C покрывается слоем минеральной ваты толщиной 50 мм. Найти суточную потерю теплоты паропроводом длиной 30 м, если температура на наружной поверхности изоляции 32 °C.

Вариант №15. Стенка теплообменника из стали толщиной 5 мм покрыта снаружи изоляцией из шлаковаты толщиной 50 мм. В теплообменнике - жидкость с температурой 100 "С, а температура наружного воздуха 10 °С Коэффициенты теплоотдачи: со стороны жидкости $\alpha_1 = 240$ Вт, (м²-К), со стороны воздуха $\alpha_2 = 10$ Вт/(м²-К). Найти температуры на поверхностях стенки и изоляции и проанализировать влияние" технических сопротивлений теплопроводности и теплоотдачи на потери теплоты.

Вариант №16. Стальной трубопровод диаметром 200×8 мм проложен на открытом воздухе, температура которого равна - 17 °C. Внутри трубы движется вода со средней температурой 93 °C, а коэффициент теплоотдачи от воды к трубе $\alpha_1 = 820 \, \text{Вт/(м}^2 \cdot \text{K})$. Определить потерю теплоты трубопроводом, если его длина 23 м, а коэффициент теплоотдачи от трубы к окружающему воздуху $\alpha_2=9 \, \text{Вт/(м}^2 \cdot \text{K})$.

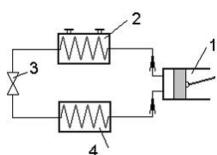
Критерии оценки:

- оценка «отлично» выставляется обучающемуся, если составлен правильный алгоритм решения задачи, задача решена верно (в выборе формул и решении нет ошибок и получен верный ответ), пояснительная записка к задаче и её графическая часть оформлены в соответствии с ЕСКД, обучающийся владеет информацией, свободно поясняет ход решения, способен сделать правильные выводы;
- оценка «хорошо» выставляется обучающемуся, если составлен правильный алгоритм решения задачи, в логическом рассуждении и решении нет существенных ошибок; правильно сделан выбор формул для решения; есть объяснение решения, но задача решена нерациональным способом или допущено не более двух несущественных ошибок, получен верный ответ, пояснительная записка к задаче и её графическая часть оформлены в соответствии с ЕСКД, обучающийся владеет информацией, свободно поясняет ход решения, способен сделать правильные выводы;
- оценка «удовлетворительно» выставляется обучающемуся, если задание понято правильно, в логическом рассуждении нет существенных ошибок, но допущены существенные ошибки в выборе формул или в математических расчётах; задача решена не полностью или в общем виде, но результаты оформлены в соответствии с ЕСКД;
- оценка «неудовлетворительно» выставляется обучающемуся, если задание не понято, есть существенные ошибки в логическом рассуждении, задача не решена.

Составитель			С.Ф. Вольвак
		(подпись)	
«	»	20 г.	

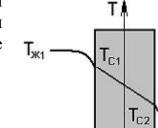
3. Фонд тестовых заданий

Задание 1


- 1. В системе СИ давление измеряется в:
 - 1) $K\Gamma/M^{2}$
 - 2) Πa
 - 3) $\kappa \Gamma^2/M$
- **2.** Машины, которые сообщают энергию жидкости или получают энергию от жидкости при прохождении последней через полости рабочих органов машины, называются:
 - 1) насосами
 - 2) гидравлическими двигателями
 - 3) гидравлическими машинами
 - 3. Центробежный насос относится к классу:
 - 1) динамических;
 - 2) объёмных;
 - 3) лопастных
 - 4. Мощность, потребляемая насосом, называется:
 - 1) полезной мощностью;
 - 2) мощностью насоса;
 - 3) переданной мощностью.
 - 5. Вязкость большинства жидкостей наиболее существенно зависит
 - 1) от давления;
 - 2) от скорости потока жидкости;
 - 3) от температуры;
 - 6. Гидростатика раздел гидравлики, изучающий законы
 - 1) движения жидкости
 - 2) равновесия жидкости
 - 3) равновесия и движения жидкости.
- **7.** Количество жидкости, проходящее в единицу времени через живое сечение потока, называется
 - 1) расходом жидкости
 - 2) элементарной струйкой
 - 3) смоченным периметром
- **8.** Упорядоченное движение, когда отдельные слои жидкости скользят друг по другу, не перемешиваясь, называется
 - 1) турбулентным режимом
 - 2) ламинарным режимом
 - 3) переходным режимом
- **9.** Потоки, частично ограниченны твердой поверхностью, а частично газовой средой, называются
 - 1) безнапорными
 - 2) напорными
 - 3) имеют какое- то другое название

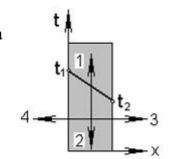
- **10.** Движение, при котором скорость и давление в любой точке потока жидкости с течением времени не изменяется, а является функциями только ее координат, называется
 - 1) неустановившимся
 - 2) установившимся
 - 3) имеет какое-то другое название
 - 11. Основное уравнение гидростатики имеет вид
 - 1) $p = p_0 \rho g h$
 - $2) \quad p = p_0 + \rho g h$
 - 3) $p = \frac{p_0}{\rho gh}$.
 - 12. Коэффициентом объемного сжатия характеризуется
 - 1) температурное расширение жидкости
 - 2) сжимаемость жидкости
 - 3) какое-то другое свойство жидкости.
- **13.** Совокупность движущихся с различными скоростями элементарных струек называется
 - 1) линией тока
 - 2) потоком жидкости
 - 3) имеет какое-то другое название
 - 14. В гидравлике рассматриваются жидкости
 - 1) газообразные
 - 2) газообразные и капельные
 - 3) капельные.
- **15.** Средний расход воды на одного потребителя за сутки в конкретных условиях называется:
 - 1) удельным водопотреблением
 - 2) нормой водопотребления
 - 3) характерным расходом
- **16.** Для регулирования подачи и потребления воды, хранения запаса воды, создания постоянного и достаточного напора водопроводной сети служат:
 - 1) насосные станции
 - 2) водонапорные башни
 - 3) очистные сооружения
 - 17. Выделяют следующие виды источников водоснабжения:
 - 1) подземные
 - 2) поверхностные и подземные
 - 3) поверхностные
- **18.** Объемные гидродвигатели с возвратно-поступательным движением выходного звена называются:
 - 1) поворотными гидродвигателями
 - 2) гидроцилиндрами
 - 3) гидромоторами

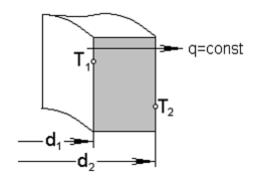
- **19.** Объёмные гидродвигатели с непрерывным движением выходного звена называются:
 - 1) поворотными гидродвигателями
 - 2) гидроцилиндрами
 - 3) гидромоторами
- 20. Объемные гидродвигатели с ограниченным углом поворота выходного звена называются:
 - 1) поворотными гидродвигателями
 - 2) гидроцилиндрами
 - 3) гидромоторами
- **21** В поршневом насосе простого действия одному обороту двигателя соответствует?
 - 1) один ход поршня;
 - 2) один ход поршня и оборот коленчатого вала;
 - 3) два хода поршня.
- **22.** Внешним цилиндрическим насадком при истечении жидкости из резервуара называется
 - 1) короткая трубка длиной, равной нескольким диаметрам без закругления входной кромки;
 - 2) короткая трубка с закруглением входной кромки;
 - 3) короткая трубка с длиной, меньшей, чем диаметр с закруглением входной кромки;
 - 4) короткая трубка с длиной, равной диаметру без закругления входной кромки.
- **23.** Уравнение Бернулли для двух различных сечений потока даёт взаимосвязь между?
 - 1) давлением, расстоянием, и геометрической высотой;
 - 2) давлением; временем и геометрической высотой;
 - 3) давлением, скоростью и геометрической высотой.
 - 24. От каких параметров зависит значение числа Рейнольдса?
 - 1) от диаметра трубопровода, кинематической вязкости жидкости и скорости движения жидкости;
 - 2) от расхода жидкости, от температуры жидкости, от длины трубопровода;
 - 3) от динамической вязкости, от плотности и от скорости движения жидкости;
 - 4) от скорости движения жидкости, от шероховатости стенок трубопровода, от вязкости жидкости.
 - **25.** Кавитация это
 - 1) воздействие давления жидкости на стенки трубопровода;
 - 2) движение жидкости в открытых руслах, связанное с интенсивным перемшиванием;
 - 3) местное изменение гидравлического сопротивления;
 - 4) изменение агрегатного состояния жидкости при движении в закрытых руслах, связанное с местным падением давления.

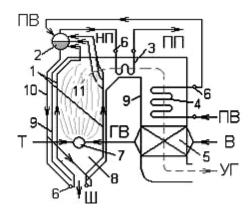

Задание 2

- 1. Термодинамическим параметром состояния является давление
 - 1) атмосферное;
 - 2) манометрическое;
 - 3) абсолютное.
- 2. Мерой интенсивности теплового движения молекул является
 - 1) давление;
 - 2) температура;
 - 3) объем.
- 3. Уравнение состояния идеального газа имеет вид
 - 1) pV = mRT;
 - 2) pV = RT;
 - 3) $pV_u = R_u T$.
- **4.** Приведенное выражение $\delta Q = dU + \delta L$, является математическим выражением
 - 1) первого закона термодинамики;
 - 2) второго закона термодинамики;
 - 3) третьего закона термодинамики.
- 5. Выделяют следующие виды удельной теплоёмкости
 - 1) массовую, молярную;
 - 2) молярную, объёмную;
 - 3) массовую, молярную, объёмную.
- 6. Политропный процесс описывается уравнением
 - 1) $\delta q = 0$;
 - 2) p=const;
 - 3) $pv^n = const.$
- 7. Рассчитать, какое количество теплоты в тепловой машине превращается в полезную работу, а какое бесполезно теряется, позволяет
 - 1) термический КПД
 - 2) эксергетический коэффициент
 - 3) коэффициент теплоотдачи
 - **8.** Масса водяного пара, содержащегося в 1м³ влажного воздуха, называется
 - 1) абсолютной влажностью;
 - 2) относительной влажностью;
 - 3) влагосодержанием.
- 9. Испаритель паровой компрессионной холодильной машины, показанной на рисунке, обозначен цифрой
 - 1) 4
 - 2) 3
- 3) 1 10. Процесс распространения непосредственного теплоты счет за соприкосновения частиц тела, называется
 - 1) конвекцией;
 - 2) теплопроводность;
 - 3) тепловым излучением.

- 11. Теплопередача это:
 - 1) процесс переноса теплоты от горячей жидкости к холодной;
 - 2) процесс переноса теплоты от горячей жидкости к холодной через разделяющую их стенку;
 - 3) процесс переноса теплоты от холодной жидкости к горячей через разделяющую их стенку.
- **12.** Теплота передаётся от горячего теплоносителя к холодному через разделяющую их стенку в
 - 1) регенеративных теплообменных аппаратах;
 - 2) теплообменных аппаратах с внутренним источником теплоты;
 - 3) рекуперативных теплообменных аппаратах.
- 13. Тепловой генератор расположен вне отапливаемых помещений и передает теплоту в них при помощи теплоносителя и нагревательных приборов
 - 1) в местных системах отопления;
 - 2) в местных и центральных системах отопления;
 - 3) в центральных системах отопления.
 - 14. Котельные установки делят на
 - 1) энергетические, отопительные;
 - 2) отопительные, производственные (промышленные);
 - 3) отопительные, энергетические, производственные (промышленные).
- **15.** Процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способны гореть в дальнейшем, называется
 - 1) неполное горение;
 - 2) полное горение;
 - 3) гомогенное горение.
- **16.** Устройство, в котором осуществляется процесс передачи теплоты от одного теплоносителя к другому (или между теплоносителями и твёрдыми телами), называется
 - 1) нагревательным прибором;
 - 2) теплообменным аппаратом (теплообменником);
 - 3) охладителем.
- **17.** В случае если не требуется дальнейшее разделение горячего и холодного теплоносителей применяют теплообменные аппараты
 - 1) с внутренним источником теплоты;
 - 2) с промежуточным теплоносителем;
 - 3) смесительные.
- **18.** Горячий и холодный теплоносители поочередно омывают одну и ту же теплообменную поверхность в
 - 1) регенеративных теплообменных аппаратах;
 - 2) теплообменных аппаратах с внутренним источником теплоты;
 - 3) рекуперативных теплообменных аппаратах.


19. В процессе теплопередачи, представленной на рисунке, интенсивность процесса передачи теплоты от более нагретой жидкости 1 к стенке характеризуется коэффициентом


- 1) λ
- 2) α_1
- 3) α_2
- **20.** Направление вектора теплового потока на рисунке обозначено цифрой


- 2) 4
- 3) 1

- **21.** Распределение температуры в однородной цилиндрической стенке, показанной на рисунке, осуществляется по
 - 1) логарифмической кривой
 - 2) гиперболе
 - 3) параболе

- **22.** Цифрой 4 на схеме вертикальноводотрубного барабанного парового котла с естественной циркуляцией обозначен
 - 1) пароперегреватель
 - 2) водяной экономайзер
 - 3) опускные необогреваемые трубы

23. Регенераторы – это:

- 1) теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку;
- 2) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей;
- 3) теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью.

24. Рекуперативные теплообменники – это:

- 1) теплообменные аппараты, в которых передача теплоты между двумя жидкостями осуществляется через разделяющую стенку;
- 2) теплообменные аппараты, в которых обмен теплотой осуществляется при смешивании горячей и холодной жидкостей;
- 3) теплообменные аппараты, в которых одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью.

25. Цикл Карно:

- 1) состоит из двух равновесных изобарных и двух равновесных адиабатных процессов;
- 2) состоит из двух равновесных изохорных и двух равновесных адиабатных процессов;
- 3) состоит из двух равновесных политропных и двух равновесных адиабатных процессов;
- 4) состоит из двух равновесных изотермических и двух равновесных адиабатных процессов.

Критерии оценки тестовых заданий

Каждый вариант теста содержит по 25 (двадцать пять) вопросов. Задания в тесте направлены на выбор одного правильного ответа. Время выполнения тестового задания – 30 минут.

Оценка за тестовые задания выставляется с учётом следующих критериев:

- до 15 правильных ответов неудовлетворительно;
- 16-18 правильных ответов удовлетворительно;
- 19-22 правильных ответов хорошо;
- 23-25 правильных ответов отлично.

Составитель		С.Ф. Вольвак	
	(подпись)	_	
« »	20 г.		

4. Комплекты оценочных средств

4.1 Перечень оценочных средств

№ π/π	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	2	3	4
1	Реферат	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определённой научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на неё	Темы рефератов
2	Доклад, сообщение, презентация	Продукт самостоятельной работы студента, представляющий собой	
3	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий
4	Кейс-задача	Проблемное задание, в котором обучающемуся предлагают осмыслить реальную профессионально-ориентированную ситуацию, необходимую для решения данной проблемы.	Задания для решения кейс-задачи

4.2 Темы рефератов докладов, сообщений, презентаций

- 1. Общие сведения о жидкостях.
- 2. Основные физические и механические характеристики жидкости.
- 3. Сжимаемость и температурное расширение жидкостей.
- 4. Основное уравнение гидростатики.
- 5. Измерение давления.
- 6. Закон Паскаля.
- 7. Давление жидкости на дно и стенки сосуда.
- 8. Закон Архимеда.
- 9. Гидростатические машины.
- 10. Основные понятия гидродинамики.
- 11. Виды движения жидкостей.
- 12. Ламинарный и турбулентный режимы движения жидкостей.
- 13. Движение жидкостей и газов по трубам.
- 14. Истечение жидкостей и газов через отверстия и насадки.
- 15. Общие сведения о гидравлических машинах, классификация и назначение.
- 16. Общие сведения о динамических насосах.
- 17. Общие сведения об объёмных гидромашинах.
- 18. Зубчатые и шестерёнчатые насосы.
- 19. Виды поршневых насосов и их характеристики.
- 20. Устройство и характеристика центробежных насосов.
- 21. Характеристики основных видов вентиляторов.
- 22. Динамические гидропередачи.
- 23. Объёмные гидроприводы.
- 24. Основы гидромелиорации.
- 25. Особенности сельскохозяйственного водоснабжения.
- 26. Основные понятия и определения термодинамики.
- 27. Уравнение состояния.
- 28. Газовые законы.
- 29. Теплоёмкость.
- 30. Первый закон термодинамики.
- 31. Термодинамические процессы идеальных газов.
- 32. Второй закон термодинамики.
- 33. Круговые процессы и термодинамические циклы.
- 34. Циклы ДВС.
- 35. КПД циклов.
- 36. Компрессоры.
- 37. Виды теплообмена.
- 38. Теплопроводность.
- 39. Теплопередача.
- 40. Принципы работы теплообменных аппаратов и их применение.
- 41. Виды и свойства теплоносителей.
- 42. Рекуперативные и регенеративные теплообменные аппараты.
- 43. Котельные установки.

- 44. Топочные устройства.
- 45. Теплогенераторы.
- 46. Холодильные машины.
- 47. Использование теплоты в сельском хозяйстве.
- 48. Теплоснабжение производственных помещений.
- 49. Теплоснабжение сооружений защищённого грунта.
- 50. Системы вентиляции и кондиционирования.

Критерии оценки:

- оценка «отлично» выставляется обучающемуся, если реферат оформлен в соответствии с требованиями ЕСКД, полностью раскрывает описываемую тему, студент владеет информацией на высоком студенческом уровне, свободно делает доклад с презентацией в PowerPoint, способен сформулировать выводы и личные предложения, отвечает более чем на 80% вопросов преподавателя и студентов группы;
- оценка «хорошо» выставляется обучающемуся, если реферат оформлен в соответствии с требованиями ЕСКД, полностью раскрывает описываемую тему, студент владеет информацией, свободно делает доклад с презентацией в PowerPoint, способен сформулировать выводы с помощью преподавателя и отвечает на 70-80% вопросов преподавателя и студентов группы;
- оценка «удовлетворительно» выставляется обучающемуся, если реферат оформлен в соответствии с требованиями ЕСКД, полностью раскрывает описываемую тему, студент в целом владеет информацией, делает устный доклад без презентации, способен сформулировать выводы с помощью преподавателя и отвечает на 60-70% вопросов преподавателя или студентов группы.
- оценка «неудовлетворительно» выставляется обучающемуся, если реферат оформлен без соответствия требованиям ЕСКД, не раскрывает описываемую тему, студент в целом не владеет информацией и затрудняется сделать устный доклад.

Составитель		С.Ф. Вольвак
	(подпись)	
«»	20 г.	

4.3 Кейс-задачи

Все кейс-задачи решаются командой студентов с применением метода «мозгового итурма».

«Мозговой штурм» («мозговая атака») представляет собой разновидность групповой дискуссии, которая характеризуется отсутствием критики поисковых усилий, сбором всех вариантов решений, гипотез и предложений, рождённых в процессе осмысления какой-либо проблемы, их последующим анализом с точки зрения перспективы дальнейшего использования или реализации на практике.

«Мозговой штурм» включает три этапа: подготовительный, этап генерирования идей, этап анализа и оценки идей. Продолжительность «мозгового штурма», как правило, до 2 часов.

Задание 1

Определить оптимальное значение увеличения давления в стальном трубопроводе длиной 1200 м при его закрывании в течении 2 с и скорости движения воды в трубопроводе 3 м/с.

Задание 2

Определить оптимальные значения скорости истечения и расхода воды через отверстие в тонкой стенке резервуара, если напор над центром отверстия 10 м, диаметр отверстия 100 мм, коэффициент скорости $\varphi=0.97$; коэффициент расхода $\mu=0.62$.

Задание 3

Вычислить оптимальное значение расхода воды, вытекающей из бассейна через внутреннюю цилиндрическую насадку диаметром 200 мм при напоре 4 м и коэффициенте расхода $\mu=0.74$.

Задание 4

Ручная шланговая мойка автомобилей и прицепов производится брандспойтом. Какое оптимальное давление должен создавать насос, чтобы получить расход воды 40 л/мин через сопло диаметром отверстия 3,5 мм. Диаметр шланга 25 мм. Потери напора не учитывать. Атмосферное давление принять 10^5 Па.

Задание 5

При частоте вращения вала 1000 мин⁻¹ центробежный насос потребляет 4 кВт энергии, подаёт 20 литров воды в секунду под напором 10 метров. Определить оптимальные рабочие параметры насоса при увеличении частоты вращения вала до 3000 мин⁻¹.

Задание 6

Определите оптимальное значение мощности электродвигателя привода водяного насоса при подаче $Q=0.05~{\rm m}^3/{\rm c}$, напоре $H=40~{\rm m}$ и полном КПД $\eta=0.6$. Плотность воды принять равной $\rho=1000~{\rm kr/m}^3$.

Задание 7

Определите оптимальное значение объёмной подачи двухцилиндрового поршневого насоса при диаметре поршней d=0,1 м, рабочем ходе поршней l=0,1 м и частоте вращения вала приводного электродвигателя n=960 мин⁻¹. Объёмные потери не учитывать.

Задание 8

Привод водяного насоса обеспечивает частоту вращения его вала $n_1 = 15$ с⁻¹, при этом подача насоса составляет $Q_1 = 0.01$ м³/с, а напор $H_1 = 20$ м. Определите оптимальное значение частоты вращения вала насоса при необходимости увеличения напора до 80 м. Как изменится при этом подача насоса?

Критерии оценки:

- оценка «отлично» выставляется команде обучающихся, если составлен правильный алгоритм решения задачи, задача решена верно (в выборе формул и решении нет ошибок и получен верный ответ), пояснительная записка к задаче и её графическая часть оформлены в соответствии с ЕСКД, обучающиеся владеют информацией, свободно поясняют ход решения, способны сделать правильные выводы;
- оценка «хорошо» выставляется команде обучающихся, если составлен правильный алгоритм решения задачи, в логическом рассуждении и решении нет существенных ошибок; правильно сделан выбор формул для решения; есть объяснение решения, но задача решена нерациональным способом или допущено не более двух несущественных ошибок, получен верный ответ, пояснительная записка к задаче и её графическая часть оформлены в соответствии с ЕСКД, обучающиеся владеют информацией, свободно поясняют ход решения, способны сделать правильные выводы;
- оценка «удовлетворительно» выставляется команде обучающихся, если задание понято правильно, в логическом рассуждении нет существенных ошибок, но допущены существенные ошибки в выборе формул или в математических расчётах; задача решена не полностью или в общем виде, но результаты оформлены в соответствии с ЕСКД;
- оценка «неудовлетворительно» выставляется команде обучающихся, если задание не понято, есть существенные ошибки в логическом рассуждении, задача не решена.

Составитель		С.Ф. Вольва	
	(подпись)	- 	
« »	20 г.		